If the HCF of 65 and 117 is expressed in the form of $65n-117$. Find the value of $n$.
Answer
Verified
407.1k+ views
Hint: We need to find the HCF of 65 and 117. First, we need to find the common factors of 117 and 65 from their factors’ list. Then we find the greatest common factor of 117 and 65. We can also take the simultaneous factorisation of those two numbers to find the HCF.
Complete step by step solution:
We need to find the HCF of 65 and 117. HCF stands for the highest common factor.
We use the simultaneous factorisation to find the highest common factor of 117 and 65.
We have to divide both of them with possible primes which can divide both of them.
\[\begin{align}
& 13\left| \!{\underline {\,
65,117 \,}} \right. \\
& 1\left| \!{\underline {\,
5,9 \,}} \right. \\
\end{align}\]
The only possible prime being 13. Therefore, the highest common factor of 117 and 65 is 13.
It is given that the HCF of 65 and 117 is expressed in the form of $65n-117$.
\[\begin{align}
& 65n-117=13 \\
& \Rightarrow 65n=117+13=130 \\
& \Rightarrow n=\dfrac{130}{65}=2 \\
\end{align}\]
Therefore, the value of $n$ is 2.
Note:
We need to remember that the HCF has to be only one number. It is the highest possible divisor of all the given numbers. If the given numbers are prime numbers, then the HCF of those numbers will always be 1.
Therefore, if for numbers $x$ and $y$, the HCF is $a$ then the HCF of the numbers $\dfrac{x}{a}$ and $\dfrac{y}{a}$ will be 1.
Complete step by step solution:
We need to find the HCF of 65 and 117. HCF stands for the highest common factor.
We use the simultaneous factorisation to find the highest common factor of 117 and 65.
We have to divide both of them with possible primes which can divide both of them.
\[\begin{align}
& 13\left| \!{\underline {\,
65,117 \,}} \right. \\
& 1\left| \!{\underline {\,
5,9 \,}} \right. \\
\end{align}\]
The only possible prime being 13. Therefore, the highest common factor of 117 and 65 is 13.
It is given that the HCF of 65 and 117 is expressed in the form of $65n-117$.
\[\begin{align}
& 65n-117=13 \\
& \Rightarrow 65n=117+13=130 \\
& \Rightarrow n=\dfrac{130}{65}=2 \\
\end{align}\]
Therefore, the value of $n$ is 2.
Note:
We need to remember that the HCF has to be only one number. It is the highest possible divisor of all the given numbers. If the given numbers are prime numbers, then the HCF of those numbers will always be 1.
Therefore, if for numbers $x$ and $y$, the HCF is $a$ then the HCF of the numbers $\dfrac{x}{a}$ and $\dfrac{y}{a}$ will be 1.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE
The length and width of a rectangle are in ratio of class 7 maths CBSE
The ratio of the income to the expenditure of a family class 7 maths CBSE
How do you write 025 million in scientific notatio class 7 maths CBSE
How do you convert 295 meters per second to kilometers class 7 maths CBSE
Write the following in Roman numerals 25819 class 7 maths CBSE
Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
The Island of Bombay was given to the English Prince class 7 social science CBSE
Convert 200 Million dollars in rupees class 7 maths CBSE
Fill in the blanks with appropriate modals a Drivers class 7 english CBSE
What are the controls affecting the climate of Ind class 7 social science CBSE
The southernmost point of the Indian mainland is known class 7 social studies CBSE