If the intensity of sound is increased by a factor of \[30\], by how many decibels is the sound level increased?
A) \[12dB\]
B) \[14.77dB\]
C) \[10dB\]
D) \[13dB\]
Answer
Verified
116.4k+ views
Hint: Sound Intensity, also known as acoustic intensity, is the power the sound wave carries per unit area in a direction perpendicular to the aforementioned area. Decibel, on the other hand, is a logarithmic unit, used to measure sound level.
Formula used: \[\beta =10\log \dfrac{I}{{{I}_{0}}}\]
Complete step by step solution:
We have been given that intensity of sound increases by a factor of \[30\]
One decibel is equal to ten times the logarithm to base \[10\] (or common logarithm) of the power or the intensity ratio. It can be more clearly expressed as a formula,
\[\beta =10\log \dfrac{I}{{{I}_{0}}}\] where \[\beta \] is the sound level in decibels, \[I\] is the intensity of sound and \[{{I}_{0}}\] is the threshold intensity of sound.
Let the initial intensity of the sound be \[I\], we can express it in decibels as \[{{\beta }_{1}}=10\log \dfrac{I}{{{I}_{0}}}\]
Now, the intensity of sound is increased by a factor of \[30\], so the new intensity of the sound will be \[30I\]. The loudness of this intensity can be expressed as \[{{\beta }_{2}}=10\log \dfrac{30I}{{{I}_{0}}}\]
Since we are concerned with the increase in the loudness, we can find it by taking the difference between the two calculated decibel loudness,
Increase in sound level \[\Rightarrow {{\beta }_{2}}-{{\beta }_{1}}\]
\[{{\beta }_{2}}-{{\beta }_{1}}=10\log \dfrac{30I}{{{I}_{0}}}-10\log \dfrac{I}{{{I}_{0}}}\]
Using properties of logarithms, we can now say that
\[\begin{align}
& {{\beta }_{2}}-{{\beta }_{1}}=10(\log \dfrac{30(\dfrac{I}{{{I}_{0}}})}{1(\dfrac{I}{{{I}_{0}}})}) \\
& \Rightarrow {{\beta }_{2}}-{{\beta }_{1}}=10\log 30=14.77dB \\
\end{align}\]
Hence, there is an increase of \[14.77dB\] in the sound level when intensity increases by a factor of \[30\].
Note:Loudness refers to how loud or soft a sound seems to a listener. The loudness of sound is determined by its intensity and intensity, in turn, is determined by the amplitude of the sound waves and the distance travelled by the sound waves from the source.
Formula used: \[\beta =10\log \dfrac{I}{{{I}_{0}}}\]
Complete step by step solution:
We have been given that intensity of sound increases by a factor of \[30\]
One decibel is equal to ten times the logarithm to base \[10\] (or common logarithm) of the power or the intensity ratio. It can be more clearly expressed as a formula,
\[\beta =10\log \dfrac{I}{{{I}_{0}}}\] where \[\beta \] is the sound level in decibels, \[I\] is the intensity of sound and \[{{I}_{0}}\] is the threshold intensity of sound.
Let the initial intensity of the sound be \[I\], we can express it in decibels as \[{{\beta }_{1}}=10\log \dfrac{I}{{{I}_{0}}}\]
Now, the intensity of sound is increased by a factor of \[30\], so the new intensity of the sound will be \[30I\]. The loudness of this intensity can be expressed as \[{{\beta }_{2}}=10\log \dfrac{30I}{{{I}_{0}}}\]
Since we are concerned with the increase in the loudness, we can find it by taking the difference between the two calculated decibel loudness,
Increase in sound level \[\Rightarrow {{\beta }_{2}}-{{\beta }_{1}}\]
\[{{\beta }_{2}}-{{\beta }_{1}}=10\log \dfrac{30I}{{{I}_{0}}}-10\log \dfrac{I}{{{I}_{0}}}\]
Using properties of logarithms, we can now say that
\[\begin{align}
& {{\beta }_{2}}-{{\beta }_{1}}=10(\log \dfrac{30(\dfrac{I}{{{I}_{0}}})}{1(\dfrac{I}{{{I}_{0}}})}) \\
& \Rightarrow {{\beta }_{2}}-{{\beta }_{1}}=10\log 30=14.77dB \\
\end{align}\]
Hence, there is an increase of \[14.77dB\] in the sound level when intensity increases by a factor of \[30\].
Note:Loudness refers to how loud or soft a sound seems to a listener. The loudness of sound is determined by its intensity and intensity, in turn, is determined by the amplitude of the sound waves and the distance travelled by the sound waves from the source.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids