Answer
Verified
448.2k+ views
Hint: In order to find the solution of this equation we will use the formula related linear charge density ($\lambda $) and the electric field density and that is $E=\dfrac{2k\lambda }{r}$ by using this equation we will get electric field intensity at point o.
Formula used:
$E=\dfrac{2k\lambda }{r}$
E = electric field intensity
$\lambda $= linear charge density
r = distance r from the line
Complete step-by-step answer:
Now it is given that in the question that the value of the linear charge density is
$\lambda =1\mu C/m$
$\to $ So if we convert from $\mu C/m$ to C/m we have to multiply by ${{10}^{-6}}$ now the value of the linear charge density is
$\lambda =1\times {{10}^{-6}}C/m$
$\to $Now the electric field intensity at the distance from 1m is given by
${{E}_{1}}=\dfrac{2k\lambda }{r}$
Here the value of k is given by $9\times {{10}^{9}}$
$\begin{align}
& {{E}_{1}}=\underset{1}{\mathop{2\times 9\times {{10}^{9}}\times 1\times {{10}^{-6}}}}\, \\
& {{E}_{1}}=18\times {{10}^{3}}N/C......\left( 1 \right) \\
\end{align}$
$\to $Now the electric field intensity at distance from 2m is given by
$\begin{align}
& {{E}_{1}}=\underset{2}{\mathop{2\times 9\times {{10}^{9}}\times 1\times {{10}^{-6}}}}\, \\
& {{E}_{1}}=9\times {{10}^{3}}N/C......\left( 2 \right) \\
\end{align}$
$\to $Now the total electric field intensity at point o is given by
$E={{E}_{1}}-{{E}_{2}}......\left( 3 \right)$
$\to $Now substitute the value of the equation (1) and (2) in equation (3) to get electric field intensity at point o.
$\begin{align}
& E=18\times {{10}^{3}}-9\times {{10}^{3}} \\
& =\left( 18-9 \right)\times {{10}^{3}} \\
& =9\times {{10}^{3}}N/C \\
& E=9000N/C \\
\end{align}$
Hence the correct option is (C) 9000N/C
So, the correct answer is “Option C”.
Additional Information: In this question value of the k is given by $\dfrac{1}{4\pi {{\varepsilon }_{0}}}$ because the initial equation of the electric field intensity is
$E=\dfrac{\lambda }{2\pi {{\varepsilon }_{0}}r}$
Then we can substitute$\dfrac{1}{2\pi {{\varepsilon }_{0}}}$ by
$\begin{align}
& 2k=2\left( \dfrac{1}{4\pi {{\varepsilon }_{0}}} \right) \\
& 2k=\dfrac{1}{2\pi {{\varepsilon }_{0}}} \\
\end{align}$
Hence our equation will become
$E=\dfrac{2k\lambda }{r}$
Hence the correct option is (C).
Note: As shown in the figure that when the positive (+ve) charge is considered at a point o then from the both the sides the linear charge density will be opposite from the both the sides at the point o.
Formula used:
$E=\dfrac{2k\lambda }{r}$
E = electric field intensity
$\lambda $= linear charge density
r = distance r from the line
Complete step-by-step answer:
Now it is given that in the question that the value of the linear charge density is
$\lambda =1\mu C/m$
$\to $ So if we convert from $\mu C/m$ to C/m we have to multiply by ${{10}^{-6}}$ now the value of the linear charge density is
$\lambda =1\times {{10}^{-6}}C/m$
$\to $Now the electric field intensity at the distance from 1m is given by
${{E}_{1}}=\dfrac{2k\lambda }{r}$
Here the value of k is given by $9\times {{10}^{9}}$
$\begin{align}
& {{E}_{1}}=\underset{1}{\mathop{2\times 9\times {{10}^{9}}\times 1\times {{10}^{-6}}}}\, \\
& {{E}_{1}}=18\times {{10}^{3}}N/C......\left( 1 \right) \\
\end{align}$
$\to $Now the electric field intensity at distance from 2m is given by
$\begin{align}
& {{E}_{1}}=\underset{2}{\mathop{2\times 9\times {{10}^{9}}\times 1\times {{10}^{-6}}}}\, \\
& {{E}_{1}}=9\times {{10}^{3}}N/C......\left( 2 \right) \\
\end{align}$
$\to $Now the total electric field intensity at point o is given by
$E={{E}_{1}}-{{E}_{2}}......\left( 3 \right)$
$\to $Now substitute the value of the equation (1) and (2) in equation (3) to get electric field intensity at point o.
$\begin{align}
& E=18\times {{10}^{3}}-9\times {{10}^{3}} \\
& =\left( 18-9 \right)\times {{10}^{3}} \\
& =9\times {{10}^{3}}N/C \\
& E=9000N/C \\
\end{align}$
Hence the correct option is (C) 9000N/C
So, the correct answer is “Option C”.
Additional Information: In this question value of the k is given by $\dfrac{1}{4\pi {{\varepsilon }_{0}}}$ because the initial equation of the electric field intensity is
$E=\dfrac{\lambda }{2\pi {{\varepsilon }_{0}}r}$
Then we can substitute$\dfrac{1}{2\pi {{\varepsilon }_{0}}}$ by
$\begin{align}
& 2k=2\left( \dfrac{1}{4\pi {{\varepsilon }_{0}}} \right) \\
& 2k=\dfrac{1}{2\pi {{\varepsilon }_{0}}} \\
\end{align}$
Hence our equation will become
$E=\dfrac{2k\lambda }{r}$
Hence the correct option is (C).
Note: As shown in the figure that when the positive (+ve) charge is considered at a point o then from the both the sides the linear charge density will be opposite from the both the sides at the point o.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE