If the lengths of the sides of a right-angle triangle are given as 12 cm, x cm and 13 cm as shown below, then find the value of x?
Answer
Verified
459k+ views
Hint: We start solving the problem by finding the hypotenuse of the side by using the fact that the side opposite to the right angle in the right-angle triangle is defined as hypotenuse. We then recall the Pythagoras theorem as the square of the hypotenuse is equal to the sum of the squares of the remaining sides in a right-angle triangle. We apply Pythagora's theorem to the given sides of triangle and then make the necessary calculations to get the required value of x.
Complete step-by-step answer:
According to the problem, we are given that the lengths of the sides of the right-angle triangle are 12 cm, x cm and 13 cm as shown below. We need to find the value of x.
Let us redraw the given figure.
We know that the side opposite to the right angle in right-angle triangle is defined as hypotenuse, which is the largest side of the right-angle triangle.
From figure, we can see that AB is the hypotenuse.
From Pythagoras theorem, we know that the square of the hypotenuse is equal to the sum of the squares of the remaining sides in a right-angle triangle.
From figure, we have $A{{B}^{2}}=A{{C}^{2}}+C{{B}^{2}}$.
$\Rightarrow {{13}^{2}}={{12}^{2}}+{{x}^{2}}$.
$\Rightarrow 169=144+{{x}^{2}}$.
$\Rightarrow 25={{x}^{2}}$.
$\Rightarrow x=5cm$.
∴ The value of x is 5 cm.
Note: We can also find the solve the problem as shown below:
We know that $\sin B=\dfrac{AC}{AB}=\dfrac{12}{13}$ and $\cos B=\dfrac{CB}{AB}=\dfrac{x}{13}$.
From trigonometric identities, we know that ${{\sin }^{2}}B+{{\cos }^{2}}B=1$.
So, we have ${{\left( \dfrac{12}{13} \right)}^{2}}+{{\left( \dfrac{x}{13} \right)}^{2}}=1$.
$\Rightarrow \dfrac{144}{169}+\dfrac{{{x}^{2}}}{169}=1$.
$\Rightarrow \dfrac{{{x}^{2}}}{169}=1-\dfrac{144}{169}$.
$\Rightarrow \dfrac{{{x}^{2}}}{169}=\dfrac{169-144}{169}$.
$\Rightarrow \dfrac{{{x}^{2}}}{169}=\dfrac{25}{169}$.
$\Rightarrow {{x}^{2}}=25$.
$\Rightarrow x=5$ cm.
Complete step-by-step answer:
According to the problem, we are given that the lengths of the sides of the right-angle triangle are 12 cm, x cm and 13 cm as shown below. We need to find the value of x.
Let us redraw the given figure.
We know that the side opposite to the right angle in right-angle triangle is defined as hypotenuse, which is the largest side of the right-angle triangle.
From figure, we can see that AB is the hypotenuse.
From Pythagoras theorem, we know that the square of the hypotenuse is equal to the sum of the squares of the remaining sides in a right-angle triangle.
From figure, we have $A{{B}^{2}}=A{{C}^{2}}+C{{B}^{2}}$.
$\Rightarrow {{13}^{2}}={{12}^{2}}+{{x}^{2}}$.
$\Rightarrow 169=144+{{x}^{2}}$.
$\Rightarrow 25={{x}^{2}}$.
$\Rightarrow x=5cm$.
∴ The value of x is 5 cm.
Note: We can also find the solve the problem as shown below:
We know that $\sin B=\dfrac{AC}{AB}=\dfrac{12}{13}$ and $\cos B=\dfrac{CB}{AB}=\dfrac{x}{13}$.
From trigonometric identities, we know that ${{\sin }^{2}}B+{{\cos }^{2}}B=1$.
So, we have ${{\left( \dfrac{12}{13} \right)}^{2}}+{{\left( \dfrac{x}{13} \right)}^{2}}=1$.
$\Rightarrow \dfrac{144}{169}+\dfrac{{{x}^{2}}}{169}=1$.
$\Rightarrow \dfrac{{{x}^{2}}}{169}=1-\dfrac{144}{169}$.
$\Rightarrow \dfrac{{{x}^{2}}}{169}=\dfrac{169-144}{169}$.
$\Rightarrow \dfrac{{{x}^{2}}}{169}=\dfrac{25}{169}$.
$\Rightarrow {{x}^{2}}=25$.
$\Rightarrow x=5$ cm.
Recently Updated Pages
A house design given on an isometric dot sheet in an class 9 maths CBSE
How does air exert pressure class 9 chemistry CBSE
Name the highest summit of Nilgiri hills AVelliangiri class 9 social science CBSE
If log x+1x2+x624 then the values of twice the sum class 9 maths CBSE
How do you convert 245 into fraction and decimal class 9 maths CBSE
ABCD is a trapezium in which ABparallel DC and AB 2CD class 9 maths CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is the role of NGOs during disaster managemen class 9 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE
What is pollution? How many types of pollution? Define it