Answer
Verified
479.1k+ views
Hint: We will be using the concepts of parabola to solve the problem. We will also be using concepts of tangent, chords of parabola to further simplify the problem.
Complete step by step answer:
Now, we have been given that the normal drawn at the end points of variable chord PQ intersect a parabola. So, we will draw the diagram accordingly.
Now, we know that whenever the normal drawn at the ends of a chord intersects a parabola the chord is a focal chord means that the chord passes through the focus. Therefore, PQ is a focal chord.
Now, we will draw the directrix of the parabola \[{{y}^{2}}\ =\ 4ax\]. We know that the equation of the directrix is \[x\ =\ -a\]and the coordinate of focus is \[\left( -a,0 \right)\].
Now, we will take a point on the directrix, let the point be \[\left( -a,c \right)\] where \[c\ \in \ \text{R}\]. Now, we will write the equation of chord of contact for point \[\left( -a,c \right)\]. We know that the equation of chord of contact is \[\text{T}\ \text{=}\ \text{0}\]. Where T is
\[yy'-\dfrac{4a\left( x+x' \right)}{2}\ =\ 0\]
See now, \[y'x'\ =\ \left( -a,c \right)\]
\[yc-\dfrac{4a\left( x-a \right)}{2}\ =\ 0\]
\[yc-2a\left( x-a \right)\ =\ 0\] …………………………………..(i)
Now, we see that the coordinate \[\left( a,0 \right)\]or Focus satisfy (i),
\[y0-2a\left( a-a \right)\ =\ 0\]
\[0\ =\ 0\]
Now, we can say that locus of point of intersection of the tangent drawn at P, Q is \[x-a\] because we have proved that the chord is focal chord and also we have taken an arbitrary point on directrix and proved that chord of contact is focal chord so the vice-versa will also be true hence the tangents drawn at point P and Q is \[x\ =\ -a\] or \[x\ +a\ =\ 0\].
Hence, option (a) is correct.
Note: To solve these types of questions one must have a good understanding of parabola and its properties. Properties of the directrix of parabola and focal chord of parabola are important to solve such questions.
Complete step by step answer:
Now, we have been given that the normal drawn at the end points of variable chord PQ intersect a parabola. So, we will draw the diagram accordingly.
Now, we know that whenever the normal drawn at the ends of a chord intersects a parabola the chord is a focal chord means that the chord passes through the focus. Therefore, PQ is a focal chord.
Now, we will draw the directrix of the parabola \[{{y}^{2}}\ =\ 4ax\]. We know that the equation of the directrix is \[x\ =\ -a\]and the coordinate of focus is \[\left( -a,0 \right)\].
Now, we will take a point on the directrix, let the point be \[\left( -a,c \right)\] where \[c\ \in \ \text{R}\]. Now, we will write the equation of chord of contact for point \[\left( -a,c \right)\]. We know that the equation of chord of contact is \[\text{T}\ \text{=}\ \text{0}\]. Where T is
\[yy'-\dfrac{4a\left( x+x' \right)}{2}\ =\ 0\]
See now, \[y'x'\ =\ \left( -a,c \right)\]
\[yc-\dfrac{4a\left( x-a \right)}{2}\ =\ 0\]
\[yc-2a\left( x-a \right)\ =\ 0\] …………………………………..(i)
Now, we see that the coordinate \[\left( a,0 \right)\]or Focus satisfy (i),
\[y0-2a\left( a-a \right)\ =\ 0\]
\[0\ =\ 0\]
Now, we can say that locus of point of intersection of the tangent drawn at P, Q is \[x-a\] because we have proved that the chord is focal chord and also we have taken an arbitrary point on directrix and proved that chord of contact is focal chord so the vice-versa will also be true hence the tangents drawn at point P and Q is \[x\ =\ -a\] or \[x\ +a\ =\ 0\].
Hence, option (a) is correct.
Note: To solve these types of questions one must have a good understanding of parabola and its properties. Properties of the directrix of parabola and focal chord of parabola are important to solve such questions.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE