Answer
Verified
473.1k+ views
Hint: If a system of homogeneous equations has a trivial solution then the determinant of coefficients of x, y and z of the equations taken row-wise is equal to zero.
Proceeding to this we’ll obtain an equation in ‘k’. solving for ‘k’ we will obtain the required values of k.
Complete step by step solution:
Given: the system of equations having a trivial solution,
$
x - ky + z = 0 \\
kx + 3y - kz = 0 \\
3x + y - z = 0 \\
$
It is well known that, if the system of homogeneous equations say
$
{a_1}x + {b_1}y + {c_1}z = 0 \\
{a_2}x + {b_2}y + {c_2}z = 0 \\
{a_3}x + {b_3}y + {c_3}z = 0 \\
$
Have only a trivial solution then, it is said that
\[\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}} \\
{{a_3}}&{{b_3}}&{{c_3}}
\end{array}} \right| = 0\]
Applying this to the systems of homogeneous equations that are given to us, we’ll get
\[
\left| {\begin{array}{*{20}{c}}
1&{ - k}&1 \\
k&3&{ - k} \\
3&1&{ - 1}
\end{array}} \right| = 0 \\
\Rightarrow 1( - 3 + k) + k( - k + 3k) + 1(k - 9) = 0 \\
\Rightarrow k - 3 + k(2k) + k - 9 = 0 \\
\Rightarrow 2k - 12 + 2{k^2} = 0 \\
\Rightarrow 2{k^2} + 2k - 12 = 0 \\
\]
Dividing the whole equation by 2, we’ll be left with
\[
{k^2} + k - 6 = 0 \\
\Rightarrow {k^2} + (3 - 2)k - 6 = 0 \\
\Rightarrow {k^2} + 3k - 2k - 6 = 0 \\
\Rightarrow k(k + 3) - 2(k + 3) = 0 \\
\]
Taking \[\left( {k + 3} \right)\] common from both the terms, we’ll have
\[
(k + 3)(k - 2) = 0 \\
i.e.{\text{ }}k + 3 = 0{\text{ }}or{\text{ }}k - 2 = 0 \\
\therefore k = - 3{\text{ }}or{\text{ }}k = 2 \\
\]
Therefore for ${\text{k = }}\left\{ {{\text{2, - 3}}} \right\}$ we fill obtain the trivial solution for the given system of homogeneous equations.
(A) \[\left\{ {2, - 3} \right\}\] is the correct option.
Note: Determinant can also be solved as taken in order of the first column, then we’ll obtain
\[
\left| {\begin{array}{*{20}{c}}
1&{ - k}&1 \\
k&3&{ - k} \\
3&1&{ - 1}
\end{array}} \right| = 0 \\
\Rightarrow 1( - 3 + k) - k(k - 1) + 3({k^2} - 3) = 0 \\
\Rightarrow k - 3 - {k^2} + k + 3{k^2} - 9 = 0 \\
\Rightarrow 2k - 12 + 2{k^2} = 0 \\
\Rightarrow 2{k^2} + 2k - 12 = 0 \\
\]
Dividing the whole equation by 2, we’ll be left with
\[
{k^2} + k - 6 = 0 \\
\Rightarrow {k^2} + (3 - 2)k - 6 = 0 \\
\Rightarrow {k^2} + 3k - 2k - 6 = 0 \\
\Rightarrow k(k + 3) - 2(k + 3) = 0 \\
\]
Taking \[\left( {k + 3} \right)\] common from both the terms
\[
(k + 3)(k - 2) = 0 \\
i.e.{\text{ }}k + 3 = 0{\text{ }}or{\text{ }}k - 2 = 0 \\
\therefore k = - 3{\text{ }}or{\text{ }}k = 2 \\
\]
Proceeding to this we’ll obtain an equation in ‘k’. solving for ‘k’ we will obtain the required values of k.
Complete step by step solution:
Given: the system of equations having a trivial solution,
$
x - ky + z = 0 \\
kx + 3y - kz = 0 \\
3x + y - z = 0 \\
$
It is well known that, if the system of homogeneous equations say
$
{a_1}x + {b_1}y + {c_1}z = 0 \\
{a_2}x + {b_2}y + {c_2}z = 0 \\
{a_3}x + {b_3}y + {c_3}z = 0 \\
$
Have only a trivial solution then, it is said that
\[\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}} \\
{{a_3}}&{{b_3}}&{{c_3}}
\end{array}} \right| = 0\]
Applying this to the systems of homogeneous equations that are given to us, we’ll get
\[
\left| {\begin{array}{*{20}{c}}
1&{ - k}&1 \\
k&3&{ - k} \\
3&1&{ - 1}
\end{array}} \right| = 0 \\
\Rightarrow 1( - 3 + k) + k( - k + 3k) + 1(k - 9) = 0 \\
\Rightarrow k - 3 + k(2k) + k - 9 = 0 \\
\Rightarrow 2k - 12 + 2{k^2} = 0 \\
\Rightarrow 2{k^2} + 2k - 12 = 0 \\
\]
Dividing the whole equation by 2, we’ll be left with
\[
{k^2} + k - 6 = 0 \\
\Rightarrow {k^2} + (3 - 2)k - 6 = 0 \\
\Rightarrow {k^2} + 3k - 2k - 6 = 0 \\
\Rightarrow k(k + 3) - 2(k + 3) = 0 \\
\]
Taking \[\left( {k + 3} \right)\] common from both the terms, we’ll have
\[
(k + 3)(k - 2) = 0 \\
i.e.{\text{ }}k + 3 = 0{\text{ }}or{\text{ }}k - 2 = 0 \\
\therefore k = - 3{\text{ }}or{\text{ }}k = 2 \\
\]
Therefore for ${\text{k = }}\left\{ {{\text{2, - 3}}} \right\}$ we fill obtain the trivial solution for the given system of homogeneous equations.
(A) \[\left\{ {2, - 3} \right\}\] is the correct option.
Note: Determinant can also be solved as taken in order of the first column, then we’ll obtain
\[
\left| {\begin{array}{*{20}{c}}
1&{ - k}&1 \\
k&3&{ - k} \\
3&1&{ - 1}
\end{array}} \right| = 0 \\
\Rightarrow 1( - 3 + k) - k(k - 1) + 3({k^2} - 3) = 0 \\
\Rightarrow k - 3 - {k^2} + k + 3{k^2} - 9 = 0 \\
\Rightarrow 2k - 12 + 2{k^2} = 0 \\
\Rightarrow 2{k^2} + 2k - 12 = 0 \\
\]
Dividing the whole equation by 2, we’ll be left with
\[
{k^2} + k - 6 = 0 \\
\Rightarrow {k^2} + (3 - 2)k - 6 = 0 \\
\Rightarrow {k^2} + 3k - 2k - 6 = 0 \\
\Rightarrow k(k + 3) - 2(k + 3) = 0 \\
\]
Taking \[\left( {k + 3} \right)\] common from both the terms
\[
(k + 3)(k - 2) = 0 \\
i.e.{\text{ }}k + 3 = 0{\text{ }}or{\text{ }}k - 2 = 0 \\
\therefore k = - 3{\text{ }}or{\text{ }}k = 2 \\
\]
Recently Updated Pages
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE