Answer
Verified
468.9k+ views
Hint: We will use the fact that dot product of two vectors p and q where \[p=xi+yj+zk\] and \[q={{x}^{'}}i+{{y}^{'}}j+{{z}^{'}}k\] is given by \[p.q=x{{x}^{'}}+y{{y}^{'}}+z{{z}^{'}}\]; and the cross product is given by, \[p\times q=\left| \begin{matrix}
i & j & k \\
x & y & z \\
{{x}^{'}} & {{y}^{'}} & {{z}^{'}} \\
\end{matrix} \right|\].
Complete step-by-step answer:
To compute the cross product of two vectors we have,
Let \[p=xi+yj+zk\] and \[q={{x}^{'}}i+{{y}^{'}}j+{{z}^{'}}k\]
Then cross – product \[p\times q\] is given as,
\[p\times q=\left| \begin{matrix}
i & j & k \\
x & y & z \\
{{x}^{'}} & {{y}^{'}} & {{z}^{'}} \\
\end{matrix} \right|\]
We have, \[a=2i+3j+4k\], \[b=i+j-k\] and \[c=i-j+k\].
First we will compute \[b\times c\] using formula stated above,
We have,
\[b\times c=\left| \begin{matrix}
i & j & k \\
1 & 1 & -1 \\
1 & -1 & 1 \\
\end{matrix} \right|\]
Opening the determinant along \[{{1}^{st}}\] row we get,
\[\begin{align}
& b\times c=i\left( 1-1 \right)+\left( -j \right)\left( +1+1 \right)+k\left( -1-1 \right) \\
& \Rightarrow b\times c=-2j-2k \\
\end{align}\]
Let, \[b\times c=d=-2j-2k\].
Then we want to compute \[a\times d\] now.
Using formula stated above we have,
\[a\times d=\left| \begin{matrix}
i & j & k \\
2 & 3 & 4 \\
0 & -2 & -2 \\
\end{matrix} \right|\]
Opening the determinant along \[{{1}^{st}}\] row we get,
\[\begin{align}
& a\times d=i\left( -6+8 \right)-j\left( -4 \right)+k\left( -4 \right) \\
& \Rightarrow a\times d=2i+4j-4k \\
\end{align}\]
So, the value of \[a\times \left( b\times c \right)=2i+4j-4k\], which is the required solution.
Finally we have to verify that obtained value of \[a\times \left( b\times c \right)\] is perpendicular to a.
Two vectors are said to be perpendicular if there dot product is zero.
Let \[a\times \left( b\times c \right)=e\]
Then, \[e=2i+4j-4k\]
And \[a=2i+3j+4k\]
Now dot product of two vectors when,
\[p=xi+yj+zk\] and \[q={{x}^{'}}i+{{y}^{'}}j+{{z}^{'}}k\] is given by,
\[p.q=x{{x}^{'}}+y{{y}^{'}}+z{{z}^{'}}\]
Then using this we have,
\[\begin{align}
& a.e=2\left( 2 \right)+\left( 3 \right)\left( 4 \right)+\left( 4 \right)\left( -4 \right) \\
& a.e=4+12-16 \\
& a.e=16-16 \\
& a.e=0 \\
\end{align}\]
So, the dot product of \[a\times \left( b\times c \right)\] and a is zero. Hence they both are perpendicular. Hence verified.
Note: Another way to solve this question can be using the formula to vector triple product of cross product of three vectors which is given as, \[\overset{\to }{\mathop{a}}\,\times \left( \overset{\to }{\mathop{b}}\,\times \overset{\to }{\mathop{c}}\, \right)=\left( \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{c}}\, \right)\overset{\to }{\mathop{b}}\,-\left( \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\, \right)\overset{\to }{\mathop{c}}\,\], where a, b, c are three vectors. The answer anyway would be the same.
i & j & k \\
x & y & z \\
{{x}^{'}} & {{y}^{'}} & {{z}^{'}} \\
\end{matrix} \right|\].
Complete step-by-step answer:
To compute the cross product of two vectors we have,
Let \[p=xi+yj+zk\] and \[q={{x}^{'}}i+{{y}^{'}}j+{{z}^{'}}k\]
Then cross – product \[p\times q\] is given as,
\[p\times q=\left| \begin{matrix}
i & j & k \\
x & y & z \\
{{x}^{'}} & {{y}^{'}} & {{z}^{'}} \\
\end{matrix} \right|\]
We have, \[a=2i+3j+4k\], \[b=i+j-k\] and \[c=i-j+k\].
First we will compute \[b\times c\] using formula stated above,
We have,
\[b\times c=\left| \begin{matrix}
i & j & k \\
1 & 1 & -1 \\
1 & -1 & 1 \\
\end{matrix} \right|\]
Opening the determinant along \[{{1}^{st}}\] row we get,
\[\begin{align}
& b\times c=i\left( 1-1 \right)+\left( -j \right)\left( +1+1 \right)+k\left( -1-1 \right) \\
& \Rightarrow b\times c=-2j-2k \\
\end{align}\]
Let, \[b\times c=d=-2j-2k\].
Then we want to compute \[a\times d\] now.
Using formula stated above we have,
\[a\times d=\left| \begin{matrix}
i & j & k \\
2 & 3 & 4 \\
0 & -2 & -2 \\
\end{matrix} \right|\]
Opening the determinant along \[{{1}^{st}}\] row we get,
\[\begin{align}
& a\times d=i\left( -6+8 \right)-j\left( -4 \right)+k\left( -4 \right) \\
& \Rightarrow a\times d=2i+4j-4k \\
\end{align}\]
So, the value of \[a\times \left( b\times c \right)=2i+4j-4k\], which is the required solution.
Finally we have to verify that obtained value of \[a\times \left( b\times c \right)\] is perpendicular to a.
Two vectors are said to be perpendicular if there dot product is zero.
Let \[a\times \left( b\times c \right)=e\]
Then, \[e=2i+4j-4k\]
And \[a=2i+3j+4k\]
Now dot product of two vectors when,
\[p=xi+yj+zk\] and \[q={{x}^{'}}i+{{y}^{'}}j+{{z}^{'}}k\] is given by,
\[p.q=x{{x}^{'}}+y{{y}^{'}}+z{{z}^{'}}\]
Then using this we have,
\[\begin{align}
& a.e=2\left( 2 \right)+\left( 3 \right)\left( 4 \right)+\left( 4 \right)\left( -4 \right) \\
& a.e=4+12-16 \\
& a.e=16-16 \\
& a.e=0 \\
\end{align}\]
So, the dot product of \[a\times \left( b\times c \right)\] and a is zero. Hence they both are perpendicular. Hence verified.
Note: Another way to solve this question can be using the formula to vector triple product of cross product of three vectors which is given as, \[\overset{\to }{\mathop{a}}\,\times \left( \overset{\to }{\mathop{b}}\,\times \overset{\to }{\mathop{c}}\, \right)=\left( \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{c}}\, \right)\overset{\to }{\mathop{b}}\,-\left( \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\, \right)\overset{\to }{\mathop{c}}\,\], where a, b, c are three vectors. The answer anyway would be the same.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE