Answer
Verified
501k+ views
Hint: Taking the given probabilities of A and B events, first find out $P(A),P({{B}^{c}})$. Then using this, find out other probability identities like $P(A\cap {{B}^{c}})$ , etc.
Complete step-by-step answer:
As per the given information, A and B are two events, such that $P({{A}^{c}})=0.3,P(B)=0.4$.
Now we know the probability that an event does not occur is one minus the probability that the event occurs, so
$P({{A}^{c}})=1-P(A)$
Substituting the given value, we get
0.3 = 1 – P(A)
Or, P(A) = 1 – 0.3 =0.7 ………….(i)
Similarly, we will find out for event B, i.e.,
$P({{B}^{c}})=1-P(B)$
Substituting the given value, we get
$P({{B}^{c}})=1-0.4=0.6........(ii)$
Now we have to find,
$P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right]$
This can be written as,
$P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right]=\dfrac{P\left[ B\left( A\cup {{B}^{c}} \right) \right]}{P\left( A\cup {{B}^{c}} \right)}.........(iii)$
Observe the denominator, it is the union of event A and non occurring of event B, So
$P\left( A\cup {{B}^{c}} \right)=P(A)+P({{B}^{c}})-P(A{{B}^{c}})$
Now substituting the corresponding values from equation (i), (ii) and given value, we get
$P\left( A\cup {{B}^{c}} \right)=0.7+0.6-0.5=0.8$
Substituting this value in equation (iii), we get
$P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right]=\dfrac{P\left[ B\left( A\cup {{B}^{c}} \right) \right]}{0.8}.........(iv)$
Now we will simplify the numerator by opening the bracket as shown below:
$P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P\left[ \left( B\cap A \right)\cup \left( B\cap {{B}^{c}} \right) \right]$
But we know intersection of an event occurring and not occurring is one, so the above equation becomes,
$P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P\left[ \left( B\cap A \right) \right]........(v)$
Now we know,
$\begin{align}
& P\left( A\cap {{B}^{c}} \right)=P(A)-P\left( A\cap B \right) \\
& \Rightarrow P\left( A\cap B \right)=P(A)-P\left( A\cap {{B}^{c}} \right) \\
\end{align}$
Using this in equation (v), we get
$P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P(A)-P\left( A\cap {{B}^{c}} \right)$
We can write $P\left( A\cap {{B}^{c}} \right)=P\left( A{{B}^{c}} \right)$, so the above equation becomes,
$P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P(A)-P\left( A{{B}^{c}} \right)$
Substituting the values from equation (i) and the given values, we get
$P\left[ B\left( A\cup {{B}^{c}} \right) \right]=0.7-0.5=0.2$
Substituting this value in equation (ii), we get
$P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right]=\dfrac{0.2}{0.8}=\dfrac{1}{4}$
This is the required probability.
Note: Students get confused while applying the formula. Students should learn and understand the concept of probability clearly. Student gets confused to make out that $P\left( A\cap {{B}^{c}} \right)=P\left( A{{B}^{c}} \right)$, and they get stuck to find out the value $P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P(A)-P\left( A\cap {{B}^{c}} \right)$, and won’t be able to get the answer.
Complete step-by-step answer:
As per the given information, A and B are two events, such that $P({{A}^{c}})=0.3,P(B)=0.4$.
Now we know the probability that an event does not occur is one minus the probability that the event occurs, so
$P({{A}^{c}})=1-P(A)$
Substituting the given value, we get
0.3 = 1 – P(A)
Or, P(A) = 1 – 0.3 =0.7 ………….(i)
Similarly, we will find out for event B, i.e.,
$P({{B}^{c}})=1-P(B)$
Substituting the given value, we get
$P({{B}^{c}})=1-0.4=0.6........(ii)$
Now we have to find,
$P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right]$
This can be written as,
$P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right]=\dfrac{P\left[ B\left( A\cup {{B}^{c}} \right) \right]}{P\left( A\cup {{B}^{c}} \right)}.........(iii)$
Observe the denominator, it is the union of event A and non occurring of event B, So
$P\left( A\cup {{B}^{c}} \right)=P(A)+P({{B}^{c}})-P(A{{B}^{c}})$
Now substituting the corresponding values from equation (i), (ii) and given value, we get
$P\left( A\cup {{B}^{c}} \right)=0.7+0.6-0.5=0.8$
Substituting this value in equation (iii), we get
$P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right]=\dfrac{P\left[ B\left( A\cup {{B}^{c}} \right) \right]}{0.8}.........(iv)$
Now we will simplify the numerator by opening the bracket as shown below:
$P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P\left[ \left( B\cap A \right)\cup \left( B\cap {{B}^{c}} \right) \right]$
But we know intersection of an event occurring and not occurring is one, so the above equation becomes,
$P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P\left[ \left( B\cap A \right) \right]........(v)$
Now we know,
$\begin{align}
& P\left( A\cap {{B}^{c}} \right)=P(A)-P\left( A\cap B \right) \\
& \Rightarrow P\left( A\cap B \right)=P(A)-P\left( A\cap {{B}^{c}} \right) \\
\end{align}$
Using this in equation (v), we get
$P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P(A)-P\left( A\cap {{B}^{c}} \right)$
We can write $P\left( A\cap {{B}^{c}} \right)=P\left( A{{B}^{c}} \right)$, so the above equation becomes,
$P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P(A)-P\left( A{{B}^{c}} \right)$
Substituting the values from equation (i) and the given values, we get
$P\left[ B\left( A\cup {{B}^{c}} \right) \right]=0.7-0.5=0.2$
Substituting this value in equation (ii), we get
$P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right]=\dfrac{0.2}{0.8}=\dfrac{1}{4}$
This is the required probability.
Note: Students get confused while applying the formula. Students should learn and understand the concept of probability clearly. Student gets confused to make out that $P\left( A\cap {{B}^{c}} \right)=P\left( A{{B}^{c}} \right)$, and they get stuck to find out the value $P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P(A)-P\left( A\cap {{B}^{c}} \right)$, and won’t be able to get the answer.
Recently Updated Pages
A ray of light passes through an equilateral prism class 12 physics JEE_Main
The size of the image of an object which is at infinity class 12 physics JEE_Main
When a glass slab is placed on a cross made on a sheet class 12 physics JEE_Main
Rays from Sun converge at a point 15 cm in front of class 12 physics JEE_Main
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
If on applying the potential of 20 V on a conductor class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE