Answer
Verified
394.5k+ views
Hint: We are given equations in the matrix form. So, we will first create a matrix on either side and then we will compare the elements. After doing that we will calculate the value of $k$. We need to find $A^2$ as well, which means we have to multiply the matrix $A$ by itself. The matrix multiplication is a bit of a complex process because it is not done like the real numbers. After simplifying the left hand side of the equation, we will compare the matrices element-wise and obtain the result.
Complete step-by-step solution:
To multiply the matrix $A$ by itself, we use the formula below for matrix multiplication:
If $A=[a_{ij}]$ is an $m\times n$ matrix and $B=[b_{ij}]$ is an $n\times p$ matrix,
The product AB is an $m\times p$ matrix.
$AB=[c_{ij}]$
Where$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+...+a_{in}b_{nj}$
So, we have:
$A=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]$
Using the formula we obtain:
$\begin{align}
& {{A}^{2}}=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\times \left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
3\times 3+\left( -2\times 4 \right) & 3\times -2+\left( -2\times -2 \right) \\
4\times 3+\left( -2\times 4 \right) & 4\times -2+\left( -2\times -2 \right) \\
\end{matrix} \right] \\
\end{align}$
$\Rightarrow {{A}^{2}}=\left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]$
Hence, we have found $A^2$
Now, we plug these values in the equation given:
$A^2=kA-2I$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=k\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=\left[ \begin{matrix}
3k & -2k \\
4k & -2k \\
\end{matrix} \right]-\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=\left[ \begin{matrix}
3k-2 & -2k \\
4k & -2k-2 \\
\end{matrix} \right]$
Now, we compare the elements, we get:
$1=3k-2$
$\Rightarrow 3k=3$
$\Rightarrow k=1$
To cross verify, we use one more equation:
$-2k=-2$
$\Rightarrow k=1$
Since both the values match, we have found the value of $k$ correctly.
Hence, $k=1$
Note: Make sure that you add the terms before giving the resultant value in each position of the resultant matrix. Look for any calculation mistake that might occur while doing multiplication. Always check with two or three equations, if the value of $k$ occurs to be different in some cases, then there is a possibility that you have made a calculation mistake.
Complete step-by-step solution:
To multiply the matrix $A$ by itself, we use the formula below for matrix multiplication:
If $A=[a_{ij}]$ is an $m\times n$ matrix and $B=[b_{ij}]$ is an $n\times p$ matrix,
The product AB is an $m\times p$ matrix.
$AB=[c_{ij}]$
Where$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+...+a_{in}b_{nj}$
So, we have:
$A=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]$
Using the formula we obtain:
$\begin{align}
& {{A}^{2}}=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\times \left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
3\times 3+\left( -2\times 4 \right) & 3\times -2+\left( -2\times -2 \right) \\
4\times 3+\left( -2\times 4 \right) & 4\times -2+\left( -2\times -2 \right) \\
\end{matrix} \right] \\
\end{align}$
$\Rightarrow {{A}^{2}}=\left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]$
Hence, we have found $A^2$
Now, we plug these values in the equation given:
$A^2=kA-2I$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=k\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=\left[ \begin{matrix}
3k & -2k \\
4k & -2k \\
\end{matrix} \right]-\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=\left[ \begin{matrix}
3k-2 & -2k \\
4k & -2k-2 \\
\end{matrix} \right]$
Now, we compare the elements, we get:
$1=3k-2$
$\Rightarrow 3k=3$
$\Rightarrow k=1$
To cross verify, we use one more equation:
$-2k=-2$
$\Rightarrow k=1$
Since both the values match, we have found the value of $k$ correctly.
Hence, $k=1$
Note: Make sure that you add the terms before giving the resultant value in each position of the resultant matrix. Look for any calculation mistake that might occur while doing multiplication. Always check with two or three equations, if the value of $k$ occurs to be different in some cases, then there is a possibility that you have made a calculation mistake.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers