
If we are given matrices A=$\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]$ and $I$=$\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$. Find $k$, so that $A^2=kA-2I$.
Answer
518.1k+ views
Hint: We are given equations in the matrix form. So, we will first create a matrix on either side and then we will compare the elements. After doing that we will calculate the value of $k$. We need to find $A^2$ as well, which means we have to multiply the matrix $A$ by itself. The matrix multiplication is a bit of a complex process because it is not done like the real numbers. After simplifying the left hand side of the equation, we will compare the matrices element-wise and obtain the result.
Complete step-by-step solution:
To multiply the matrix $A$ by itself, we use the formula below for matrix multiplication:
If $A=[a_{ij}]$ is an $m\times n$ matrix and $B=[b_{ij}]$ is an $n\times p$ matrix,
The product AB is an $m\times p$ matrix.
$AB=[c_{ij}]$
Where$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+...+a_{in}b_{nj}$
So, we have:
$A=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]$
Using the formula we obtain:
$\begin{align}
& {{A}^{2}}=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\times \left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
3\times 3+\left( -2\times 4 \right) & 3\times -2+\left( -2\times -2 \right) \\
4\times 3+\left( -2\times 4 \right) & 4\times -2+\left( -2\times -2 \right) \\
\end{matrix} \right] \\
\end{align}$
$\Rightarrow {{A}^{2}}=\left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]$
Hence, we have found $A^2$
Now, we plug these values in the equation given:
$A^2=kA-2I$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=k\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=\left[ \begin{matrix}
3k & -2k \\
4k & -2k \\
\end{matrix} \right]-\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=\left[ \begin{matrix}
3k-2 & -2k \\
4k & -2k-2 \\
\end{matrix} \right]$
Now, we compare the elements, we get:
$1=3k-2$
$\Rightarrow 3k=3$
$\Rightarrow k=1$
To cross verify, we use one more equation:
$-2k=-2$
$\Rightarrow k=1$
Since both the values match, we have found the value of $k$ correctly.
Hence, $k=1$
Note: Make sure that you add the terms before giving the resultant value in each position of the resultant matrix. Look for any calculation mistake that might occur while doing multiplication. Always check with two or three equations, if the value of $k$ occurs to be different in some cases, then there is a possibility that you have made a calculation mistake.
Complete step-by-step solution:
To multiply the matrix $A$ by itself, we use the formula below for matrix multiplication:
If $A=[a_{ij}]$ is an $m\times n$ matrix and $B=[b_{ij}]$ is an $n\times p$ matrix,
The product AB is an $m\times p$ matrix.
$AB=[c_{ij}]$
Where$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+...+a_{in}b_{nj}$
So, we have:
$A=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]$
Using the formula we obtain:
$\begin{align}
& {{A}^{2}}=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\times \left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
3\times 3+\left( -2\times 4 \right) & 3\times -2+\left( -2\times -2 \right) \\
4\times 3+\left( -2\times 4 \right) & 4\times -2+\left( -2\times -2 \right) \\
\end{matrix} \right] \\
\end{align}$
$\Rightarrow {{A}^{2}}=\left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]$
Hence, we have found $A^2$
Now, we plug these values in the equation given:
$A^2=kA-2I$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=k\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=\left[ \begin{matrix}
3k & -2k \\
4k & -2k \\
\end{matrix} \right]-\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=\left[ \begin{matrix}
3k-2 & -2k \\
4k & -2k-2 \\
\end{matrix} \right]$
Now, we compare the elements, we get:
$1=3k-2$
$\Rightarrow 3k=3$
$\Rightarrow k=1$
To cross verify, we use one more equation:
$-2k=-2$
$\Rightarrow k=1$
Since both the values match, we have found the value of $k$ correctly.
Hence, $k=1$
Note: Make sure that you add the terms before giving the resultant value in each position of the resultant matrix. Look for any calculation mistake that might occur while doing multiplication. Always check with two or three equations, if the value of $k$ occurs to be different in some cases, then there is a possibility that you have made a calculation mistake.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

