If ${\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&1&1 \\
1&1&0 \\
1&0&0
\end{array}} \right]$and${\text{X + Y = }}\left[ {\begin{array}{*{20}{c}}
3&5&1 \\
{ - 1}&1&4 \\
{11}&8&0
\end{array}} \right]$, find the value of X and Y.
Answer
Verified
513k+ views
Hint- Use matrix addition/subtraction and multiplication with scalar while simplifying RHS and perform elimination methods.
Two linear equations are given to us that is
\[{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&1&1 \\
1&1&0 \\
1&0&0
\end{array}} \right]\]……………………………… (1)
\[{\text{X + Y = }}\left[ {\begin{array}{*{20}{c}}
3&5&1 \\
{ - 1}&1&4 \\
{11}&8&0
\end{array}} \right]\]……………………….. (2)
We will be simply using the elimination method to solve for the value of X and Y but in the right hand side we have been provided with a \[{\text{3}} \times {\text{3}}\]matrix, so in RHS we will be using matrix addition.
Matrix addition states that if we have two \[{\text{m}} \times {\text{n}}\]matrix like \[\left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right]\]and \[\left[ {\begin{array}{*{20}{c}}
{{b_{11}}}&{{b_{12}}}&{{b_{13}}} \\
{{b_{21}}}&{{b_{22}}}&{{b_{23}}} \\
{{b_{31}}}&{{b_{32}}}&{{b_{33}}}
\end{array}} \right]\]then
The addition of these two matrix will be \[\left[ {\begin{array}{*{20}{c}}
{{a_{11}} + {b_{11}}}&{{a_{12}} + {b_{12}}}&{{a_{13}} + {b_{13}}} \\
{{a_{21}} + {b_{21}}}&{{a_{22}} + {b_{22}}}&{{a_{23}} + {b_{23}}} \\
{{a_{31}} + {b_{31}}}&{{a_{32}} + {b_{32}}}&{{a_{33}} + {b_{33}}}
\end{array}} \right]\]
Hence now let’s add equation 1 and equation 2 so we get
\[{\text{X - Y}} + {\text{X + Y}} = \left[ {\begin{array}{*{20}{c}}
1&1&1 \\
1&1&0 \\
1&0&0
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
3&5&1 \\
{ - 1}&1&4 \\
{11}&8&0
\end{array}} \right]\]
\[2X{\text{ = }}\left[ {\begin{array}{*{20}{c}}
4&6&2 \\
0&2&4 \\
{12}&8&0
\end{array}} \right]\]
Now \[{\text{X = }}\dfrac{1}{2}\left[ {\begin{array}{*{20}{c}}
4&6&2 \\
0&2&4 \\
{12}&8&0
\end{array}} \right]\]or \[{\text{X = }}\left[ {\begin{array}{*{20}{c}}
2&3&1 \\
0&1&2 \\
6&4&0
\end{array}} \right]\]
Now let’s subtract equation (2) from equation (1)
\[{\text{X - Y - X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&1&1 \\
1&1&0 \\
1&0&0
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
3&5&1 \\
{ - 1}&1&4 \\
{11}&8&0
\end{array}} \right]\]
Let’s simplify this further we get
\[ - 2Y = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 4}&0 \\
2&0&{ - 4} \\
{ - 10}&{ - 8}&0
\end{array}} \right]{\text{ or Y = }}\dfrac{{ - 1}}{2}\left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 4}&0 \\
2&0&{ - 4} \\
{ - 10}&{ - 8}&0
\end{array}} \right]\]
Thus \[Y = \left[ {\begin{array}{*{20}{c}}
1&2&0 \\
{ - 1}&0&2 \\
5&4&0
\end{array}} \right]\]
Note-Such problems could be solved via the concept that we use while solving any two linear equations. We could have even used the method of substitution instead of elimination to solve this, the only thing which needs to be taken care of is matrix addition and subtraction is a bit different from simpler linear addition and subtraction.
Two linear equations are given to us that is
\[{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&1&1 \\
1&1&0 \\
1&0&0
\end{array}} \right]\]……………………………… (1)
\[{\text{X + Y = }}\left[ {\begin{array}{*{20}{c}}
3&5&1 \\
{ - 1}&1&4 \\
{11}&8&0
\end{array}} \right]\]……………………….. (2)
We will be simply using the elimination method to solve for the value of X and Y but in the right hand side we have been provided with a \[{\text{3}} \times {\text{3}}\]matrix, so in RHS we will be using matrix addition.
Matrix addition states that if we have two \[{\text{m}} \times {\text{n}}\]matrix like \[\left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right]\]and \[\left[ {\begin{array}{*{20}{c}}
{{b_{11}}}&{{b_{12}}}&{{b_{13}}} \\
{{b_{21}}}&{{b_{22}}}&{{b_{23}}} \\
{{b_{31}}}&{{b_{32}}}&{{b_{33}}}
\end{array}} \right]\]then
The addition of these two matrix will be \[\left[ {\begin{array}{*{20}{c}}
{{a_{11}} + {b_{11}}}&{{a_{12}} + {b_{12}}}&{{a_{13}} + {b_{13}}} \\
{{a_{21}} + {b_{21}}}&{{a_{22}} + {b_{22}}}&{{a_{23}} + {b_{23}}} \\
{{a_{31}} + {b_{31}}}&{{a_{32}} + {b_{32}}}&{{a_{33}} + {b_{33}}}
\end{array}} \right]\]
Hence now let’s add equation 1 and equation 2 so we get
\[{\text{X - Y}} + {\text{X + Y}} = \left[ {\begin{array}{*{20}{c}}
1&1&1 \\
1&1&0 \\
1&0&0
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
3&5&1 \\
{ - 1}&1&4 \\
{11}&8&0
\end{array}} \right]\]
\[2X{\text{ = }}\left[ {\begin{array}{*{20}{c}}
4&6&2 \\
0&2&4 \\
{12}&8&0
\end{array}} \right]\]
Now \[{\text{X = }}\dfrac{1}{2}\left[ {\begin{array}{*{20}{c}}
4&6&2 \\
0&2&4 \\
{12}&8&0
\end{array}} \right]\]or \[{\text{X = }}\left[ {\begin{array}{*{20}{c}}
2&3&1 \\
0&1&2 \\
6&4&0
\end{array}} \right]\]
Now let’s subtract equation (2) from equation (1)
\[{\text{X - Y - X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&1&1 \\
1&1&0 \\
1&0&0
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
3&5&1 \\
{ - 1}&1&4 \\
{11}&8&0
\end{array}} \right]\]
Let’s simplify this further we get
\[ - 2Y = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 4}&0 \\
2&0&{ - 4} \\
{ - 10}&{ - 8}&0
\end{array}} \right]{\text{ or Y = }}\dfrac{{ - 1}}{2}\left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 4}&0 \\
2&0&{ - 4} \\
{ - 10}&{ - 8}&0
\end{array}} \right]\]
Thus \[Y = \left[ {\begin{array}{*{20}{c}}
1&2&0 \\
{ - 1}&0&2 \\
5&4&0
\end{array}} \right]\]
Note-Such problems could be solved via the concept that we use while solving any two linear equations. We could have even used the method of substitution instead of elimination to solve this, the only thing which needs to be taken care of is matrix addition and subtraction is a bit different from simpler linear addition and subtraction.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE