
If ${\text{y = }}{{\text{x}}^{\text{x}}}$ , prove that
$\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}$
Answer
592.2k+ views
Hint: First we apply the logarithm function on the both sides of the equation ${\text{y = }}{{\text{x}}^{\text{x}}}$, then we’ll proceed towards finding the first derivative of the equation with respect to the independent variable i.e. x. similarly, we’ll find the double derivative of the function. After getting the first and second derivates of the function we’ll use the substitution method to eliminate the terms that are not required to get our answer.
Complete step by step answer:
Given data: ${\text{y = }}{{\text{x}}^{\text{x}}}$
On applying logarithm function on both sides, we get
${\text{ln(y) = ln(}}{{\text{x}}^{\text{x}}}{\text{)}}$
It is well known that, ${\text{ln}}{{\text{a}}^{\text{b}}}{\text{ = blna}}$,
$ \Rightarrow {\text{lny = xln(x)}}$
Now, differentiating both sides with respect to x,
Using, chain rule and multiplication rule i.e.
$
\dfrac{{{\text{df(z)}}}}{{{\text{dx}}}}{\text{ = f'(z)}}\dfrac{{{\text{dz}}}}{{{\text{dx}}}}{\text{, and}} \\
{\text{d(uv) = udv + vdu}} \\
$
$
\dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = x}}\left( {\dfrac{{\text{1}}}{{\text{x}}}} \right){\text{ + lnx}} \\
\Rightarrow \dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = 1 + lnx}}..........{\text{(i)}} \\
$
Multiplying ‘y’ with the whole equation
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = y + ylnx}}................{\text{(ii)}}$
Again, on differentiating both sides with respect to x,
$
\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ + }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{lnx}} \\
\Rightarrow \dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{(1 + lnx) + }}\dfrac{{\text{y}}}{{\text{x}}}..........{\text{(iii)}} \\
$
Now, substituting the value of (1+lnx) from equation(i) to equation(iii), we’ll be left with
\[
\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{(}}\dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{) + }}\dfrac{{\text{y}}}{{\text{x}}} \\
\Rightarrow \dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ + }}\dfrac{{\text{y}}}{{\text{x}}} \\
\Rightarrow \dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}} \\
\]
Hence, we obtained our equation i.e. \[\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}\]
Note: Alternative solution for this question can be done by substituting the value of first and second derivatives directly to the equation that has to be proved.
\[\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}\]
On substituting the value of $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ and }}\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}$ to the left-hand side of the equation, we get,
$
\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{(}}\dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{) + }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(y + ylnx)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}} \\
{\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{{{\text{y}}^{\text{2}}}}}{{\text{y}}}{{\text{(1 + lnx)}}^{\text{2}}} \\
$
On simplification we get,
${\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}$
On substituting the value of $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$, we have
\[{\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(y + ylnx)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}\]
On taking \[{{\text{y}}^{\text{2}}}\]out of the first term, we get,
\[{\text{ = }}\dfrac{{{{\text{y}}^{\text{2}}}}}{{\text{y}}}{{\text{(1 + lnx)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}\]
\[{\text{ = y(1 + lnx}}{{\text{)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}\]
\[{\text{ = 0}}\]
i.e. equal to the right-hand side
Therefore, $\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}$, holds of ${\text{y = }}{{\text{x}}^{\text{x}}}$
Complete step by step answer:
Given data: ${\text{y = }}{{\text{x}}^{\text{x}}}$
On applying logarithm function on both sides, we get
${\text{ln(y) = ln(}}{{\text{x}}^{\text{x}}}{\text{)}}$
It is well known that, ${\text{ln}}{{\text{a}}^{\text{b}}}{\text{ = blna}}$,
$ \Rightarrow {\text{lny = xln(x)}}$
Now, differentiating both sides with respect to x,
Using, chain rule and multiplication rule i.e.
$
\dfrac{{{\text{df(z)}}}}{{{\text{dx}}}}{\text{ = f'(z)}}\dfrac{{{\text{dz}}}}{{{\text{dx}}}}{\text{, and}} \\
{\text{d(uv) = udv + vdu}} \\
$
$
\dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = x}}\left( {\dfrac{{\text{1}}}{{\text{x}}}} \right){\text{ + lnx}} \\
\Rightarrow \dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = 1 + lnx}}..........{\text{(i)}} \\
$
Multiplying ‘y’ with the whole equation
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = y + ylnx}}................{\text{(ii)}}$
Again, on differentiating both sides with respect to x,
$
\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ + }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{lnx}} \\
\Rightarrow \dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{(1 + lnx) + }}\dfrac{{\text{y}}}{{\text{x}}}..........{\text{(iii)}} \\
$
Now, substituting the value of (1+lnx) from equation(i) to equation(iii), we’ll be left with
\[
\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{(}}\dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{) + }}\dfrac{{\text{y}}}{{\text{x}}} \\
\Rightarrow \dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ + }}\dfrac{{\text{y}}}{{\text{x}}} \\
\Rightarrow \dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}} \\
\]
Hence, we obtained our equation i.e. \[\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}\]
Note: Alternative solution for this question can be done by substituting the value of first and second derivatives directly to the equation that has to be proved.
\[\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}\]
On substituting the value of $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ and }}\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}$ to the left-hand side of the equation, we get,
$
\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{(}}\dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{) + }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(y + ylnx)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}} \\
{\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{{{\text{y}}^{\text{2}}}}}{{\text{y}}}{{\text{(1 + lnx)}}^{\text{2}}} \\
$
On simplification we get,
${\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}$
On substituting the value of $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$, we have
\[{\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(y + ylnx)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}\]
On taking \[{{\text{y}}^{\text{2}}}\]out of the first term, we get,
\[{\text{ = }}\dfrac{{{{\text{y}}^{\text{2}}}}}{{\text{y}}}{{\text{(1 + lnx)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}\]
\[{\text{ = y(1 + lnx}}{{\text{)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}\]
\[{\text{ = 0}}\]
i.e. equal to the right-hand side
Therefore, $\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}$, holds of ${\text{y = }}{{\text{x}}^{\text{x}}}$
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

