
If $z$ is a complex number such that $\left| z \right| \geqslant 2$ then the minimum value of $\left| {z + \frac{1}{2}} \right|$ is
A. Is strictly greater than $\frac{5}{2}$
B. Is strictly greater than $\frac{3}{2}$ but less than $\frac{5}{2}$
C. Is equal to $\frac{5}{2}$
D. Lies in the interval $(1,2)$
Answer
552.9k+ views
Hint: For solving this particular question we have to analysis that $\left| z \right|\geqslant 2$ is the region on or outside the circle whose centre is $(0,0)$and the radius is two. And minimum $\left| {z + \frac{1}{z}} \right|$ is equal to distance between $\left( { - \frac{1}{2},0} \right)$ to $(0,0)$ .
Complete solution step by step:
It is given that $z$ is a complex number such that $\left| z \right| \geqslant 2$ ,
$\left| z \right| \geqslant 2$ is the region on or outside the circle whose centre is $(0,0)$ and the radius is two.
Minimum $\left| {z + \frac{1}{z}} \right|$ is distance of $z$ which lies on the circle $\left| z \right|
= 2$ from $\left( { - \frac{1}{2},0} \right)$ ,
Thus minimum $\left| {z + \frac{1}{z}} \right|$ is equal to distance between $\left( { - \frac{1}{2},0} \right)$ to $(0,0)$ .
$\begin{gathered}
= \sqrt {{{\left( { - \frac{1}{2} + 2} \right)}^2} + {{(0 - 0)}^2}} \\
= \sqrt {{{\left( { - \frac{1}{2} + 2} \right)}^2}} \\
\end{gathered} $
Now apply radial rule that is , $\sqrt[n]{{{a^n}}} = a$ where $a \geqslant 0$ ,
Therefore , we will get ,
$\begin{gathered}
= - \frac{1}{2} + 2 \\
= \frac{{ - 1 + 4}}{2} \\
= \frac{3}{2} \\
\end{gathered} $
Hence , option B is the correct option.
Additional information: As we know that $z = x + yi$ , which is the representation of the complex number. And $z = x - yi$ , is the conjugate of the complex number.
Now multiplication of the complex number with the conjugate of the complex number we get magnitude which represents the distance of the complex number from the origin. we know that ${\left| {{z_1}} \right|^2} = {z_1}\overline {{z_1}} $ , multiplication of the complex number with the conjugate of the complex number we get magnitude which represents the distance of the complex number from the origin.
Note: If $z = x + yi$ be any complex number then modulus of $z$ is represented as $\left| z \right|$ and is equal to $\sqrt {{x^2} + {y^2}} $ . Here $\left| z \right| \geqslant 2$ is the region on or outside the circle whose centre is $(0,0)$and the radius is two.
Complete solution step by step:
It is given that $z$ is a complex number such that $\left| z \right| \geqslant 2$ ,
$\left| z \right| \geqslant 2$ is the region on or outside the circle whose centre is $(0,0)$ and the radius is two.
Minimum $\left| {z + \frac{1}{z}} \right|$ is distance of $z$ which lies on the circle $\left| z \right|
= 2$ from $\left( { - \frac{1}{2},0} \right)$ ,
Thus minimum $\left| {z + \frac{1}{z}} \right|$ is equal to distance between $\left( { - \frac{1}{2},0} \right)$ to $(0,0)$ .
$\begin{gathered}
= \sqrt {{{\left( { - \frac{1}{2} + 2} \right)}^2} + {{(0 - 0)}^2}} \\
= \sqrt {{{\left( { - \frac{1}{2} + 2} \right)}^2}} \\
\end{gathered} $
Now apply radial rule that is , $\sqrt[n]{{{a^n}}} = a$ where $a \geqslant 0$ ,
Therefore , we will get ,
$\begin{gathered}
= - \frac{1}{2} + 2 \\
= \frac{{ - 1 + 4}}{2} \\
= \frac{3}{2} \\
\end{gathered} $
Hence , option B is the correct option.
Additional information: As we know that $z = x + yi$ , which is the representation of the complex number. And $z = x - yi$ , is the conjugate of the complex number.
Now multiplication of the complex number with the conjugate of the complex number we get magnitude which represents the distance of the complex number from the origin. we know that ${\left| {{z_1}} \right|^2} = {z_1}\overline {{z_1}} $ , multiplication of the complex number with the conjugate of the complex number we get magnitude which represents the distance of the complex number from the origin.
Note: If $z = x + yi$ be any complex number then modulus of $z$ is represented as $\left| z \right|$ and is equal to $\sqrt {{x^2} + {y^2}} $ . Here $\left| z \right| \geqslant 2$ is the region on or outside the circle whose centre is $(0,0)$and the radius is two.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

