Answer
Verified
471.9k+ views
Hint: Use integration reduction method which relies on recurrence relations. This method is used when the expression contains integer parameters in the form of power of elementary functions. This method can be derived from any common method of integration, like partial integration or integration by substitution.
Complete step by step solution:
In this question write \[{I_n} = \int {{{\cot }^n}xdx} \]in the reduction form and then use the chain rule to simplify and find the value of\[{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ...... + {I_8}} \right) + {I_9} + {I_{10}}\].
Given \[{I_n} = \int {{{\cot }^n}xdx} \] the use the reduction method, we can write
\[{I_n} = \int {{{\cot }^n}xdx} = \int {{{\cot }^{n - 2}}{{\cot }^2}xdx} \]
We know\[\cos e{c^2}x = 1 + {\cot ^2}x\], hence we can write
\[
{I_n} = \int {{{\cot }^{n - 2}}x\left( {\cos e{c^2}x - 1} \right)dx} \\
{I_n} = \int {{{\cot }^{n - 2}}x\cos e{c^2}xdx - \int {{{\cot }^{n - 2}}x} dx} \\
\]
Since\[{I_n} = \int {{{\cot }^n}xdx} \]hence we can write \[\int {{{\cot }^{n - 2}}xdx = {I_{n - 2}}} \]
So we can write:
\[
{I_n} = \int {{{\cot }^{n - 2}}x\cos e{c^2}xdx - {I_{n - 2}}} \\
{I_n} + {I_{n - 2}} = \int {{{\cot }^{n - 2}}x\cos e{c^2}xdx} \\
\]
Now let us assume \[\cot x = t\]
By differentiating \[\cot x = t\] with respect to t we get,
\[
\dfrac{d}{{dx}}(\cot x) = \dfrac{{dt}}{{dx}} \\
- \cos e{c^2}xdx = dt \\
\]
Hence we can write:
\[
{I_n} + {I_{n - 2}} = \int {{{\cot }^{n - 2}}x\cos e{c^2}xdx} \\
= - \int {{t^{n - 2}}dt} \\
\]
Now integrate:
\[
{I_n} + {I_{n - 2}} = - \int {{t^{n - 2}}dt} \\
= - \dfrac{{{t^{n - 2 + 1}}}}{{n - 2 + 1}} = - \dfrac{{{t^{n - 1}}}}{{n - 1}} = - \dfrac{{{{\cot }^{n - 1}}x}}{{n - 1}} \\
\]
Hence,
\[{I_n} + {I_{n - 2}} = - \dfrac{{{{\cot }^{n - 1}}x}}{{n - 1}}\] where, \[n \geqslant 2\]
Now replace n with (n+2), we can write
\[{I_{n + 2}} + {I_n} = - \dfrac{{{{\cot }^{n + 1}}x}}{{n + 1}}\]
Now we have to find the value of\[{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ...... + {I_8}} \right) + {I_9} + {I_{10}}\], write the given function in the pair of the common difference of 2 as \[{I_{n + 2}},{I_n}\]:
\[
{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ...... + {I_8}} \right) + {I_9} + {I_{10}} = \left( {{I_0} + {I_2}} \right) + \left( {{I_1} + {I_3}} \right) + \left( {{I_2} + {I_4}} \right) + \left( {{I_3} + {I_5}} \right) + \left( {{I_4} + {I_6}} \right) + \left( {{I_5} + {I_7}} \right) + \left( {{I_8} + {I_{10}}} \right) + \left( {{I_7} + {I_9}} \right) \\
= - \cot x - \dfrac{{{{\cot }^2}x}}{2} - \dfrac{{{{\cot }^3}x}}{3} - .......... - \dfrac{{{{\cot }^9}x}}{9} \\
= - \left( {\cot x + \dfrac{{{{\cot }^2}x}}{2} + \dfrac{{{{\cot }^3}x}}{3} + .......... + \dfrac{{{{\cot }^9}x}}{9}} \right) \\
\]
Since \[u = \cot x\]is given hence, we can write
\[{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ...... + {I_8}} \right) + {I_9} + {I_{10}} = - \left( {u + \dfrac{{{u^2}}}{2} + \dfrac{{{u^3}}}{3} + .......... + \dfrac{{{u^9}}}{9}} \right)\]
Hence option B is correct.
Note: While substituting the real parameter of the question with the auxiliary parameter, one should be sure that it will not make the problem more complex. However, selecting an auxiliary parameter completely depends on the individual point of view.
Complete step by step solution:
In this question write \[{I_n} = \int {{{\cot }^n}xdx} \]in the reduction form and then use the chain rule to simplify and find the value of\[{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ...... + {I_8}} \right) + {I_9} + {I_{10}}\].
Given \[{I_n} = \int {{{\cot }^n}xdx} \] the use the reduction method, we can write
\[{I_n} = \int {{{\cot }^n}xdx} = \int {{{\cot }^{n - 2}}{{\cot }^2}xdx} \]
We know\[\cos e{c^2}x = 1 + {\cot ^2}x\], hence we can write
\[
{I_n} = \int {{{\cot }^{n - 2}}x\left( {\cos e{c^2}x - 1} \right)dx} \\
{I_n} = \int {{{\cot }^{n - 2}}x\cos e{c^2}xdx - \int {{{\cot }^{n - 2}}x} dx} \\
\]
Since\[{I_n} = \int {{{\cot }^n}xdx} \]hence we can write \[\int {{{\cot }^{n - 2}}xdx = {I_{n - 2}}} \]
So we can write:
\[
{I_n} = \int {{{\cot }^{n - 2}}x\cos e{c^2}xdx - {I_{n - 2}}} \\
{I_n} + {I_{n - 2}} = \int {{{\cot }^{n - 2}}x\cos e{c^2}xdx} \\
\]
Now let us assume \[\cot x = t\]
By differentiating \[\cot x = t\] with respect to t we get,
\[
\dfrac{d}{{dx}}(\cot x) = \dfrac{{dt}}{{dx}} \\
- \cos e{c^2}xdx = dt \\
\]
Hence we can write:
\[
{I_n} + {I_{n - 2}} = \int {{{\cot }^{n - 2}}x\cos e{c^2}xdx} \\
= - \int {{t^{n - 2}}dt} \\
\]
Now integrate:
\[
{I_n} + {I_{n - 2}} = - \int {{t^{n - 2}}dt} \\
= - \dfrac{{{t^{n - 2 + 1}}}}{{n - 2 + 1}} = - \dfrac{{{t^{n - 1}}}}{{n - 1}} = - \dfrac{{{{\cot }^{n - 1}}x}}{{n - 1}} \\
\]
Hence,
\[{I_n} + {I_{n - 2}} = - \dfrac{{{{\cot }^{n - 1}}x}}{{n - 1}}\] where, \[n \geqslant 2\]
Now replace n with (n+2), we can write
\[{I_{n + 2}} + {I_n} = - \dfrac{{{{\cot }^{n + 1}}x}}{{n + 1}}\]
Now we have to find the value of\[{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ...... + {I_8}} \right) + {I_9} + {I_{10}}\], write the given function in the pair of the common difference of 2 as \[{I_{n + 2}},{I_n}\]:
\[
{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ...... + {I_8}} \right) + {I_9} + {I_{10}} = \left( {{I_0} + {I_2}} \right) + \left( {{I_1} + {I_3}} \right) + \left( {{I_2} + {I_4}} \right) + \left( {{I_3} + {I_5}} \right) + \left( {{I_4} + {I_6}} \right) + \left( {{I_5} + {I_7}} \right) + \left( {{I_8} + {I_{10}}} \right) + \left( {{I_7} + {I_9}} \right) \\
= - \cot x - \dfrac{{{{\cot }^2}x}}{2} - \dfrac{{{{\cot }^3}x}}{3} - .......... - \dfrac{{{{\cot }^9}x}}{9} \\
= - \left( {\cot x + \dfrac{{{{\cot }^2}x}}{2} + \dfrac{{{{\cot }^3}x}}{3} + .......... + \dfrac{{{{\cot }^9}x}}{9}} \right) \\
\]
Since \[u = \cot x\]is given hence, we can write
\[{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ...... + {I_8}} \right) + {I_9} + {I_{10}} = - \left( {u + \dfrac{{{u^2}}}{2} + \dfrac{{{u^3}}}{3} + .......... + \dfrac{{{u^9}}}{9}} \right)\]
Hence option B is correct.
Note: While substituting the real parameter of the question with the auxiliary parameter, one should be sure that it will not make the problem more complex. However, selecting an auxiliary parameter completely depends on the individual point of view.
Recently Updated Pages
Which of the following is a chain growth polymer class 12 chemistry JEE_Main
Synthetic polymer prepared from caprolactum is known class 12 chemistry JEE_Main
PVC is formed by polymerization of class 12 chemistry JEE_Main
Which of the following is chalcogen class 12 chemistry JEE_Main
A very dilute acidic solution of Cd2+ and Ni2+ gives class 12 chem sec 1 JEE_Main
Calculate the equivalent resistance between A and class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE