Answer
Verified
403.2k+ views
Hint: We know that wavelength emitted due to transition of electrons is predicted by using Rydberg formula. It is basically a mathematical way to represent wavelength due to the travelling of electrons between energy levels of an atom. The transition mainly occurs due to absorption of electromagnetic radiation.
Complete answer:
Now, let us consider Rydberg formula to solve this problem
Where the wavelength can be determined as:
$ \dfrac{1}{\lambda } = R\left( {\dfrac{1}{{{n_b}}} - \dfrac{1}{{{n_i}}}} \right) $ where, $ \lambda = $ wavelength, $ R = $ Rydberg constant, $ {n_b} = $ lower energy level $ {n_i} = $ higher energy level.
$ R $ is given as $ R = \dfrac{{{m_e}.{e^4}}}{{8{\varepsilon _0}c{h^3}}} $ where $ {m_e} $ is mass of electron, $ e = $ elementary charge, $ {\varepsilon _0} = $ permittivity of vacuum, $ c = $ speed of light in vacuum, $ h = $ planck's constant
It is given that electrons have the same charge so $ e $ will be constant, other elements in the formula are also constant such as $ h,{\varepsilon _0},c $ .
So we can say that Rydberg constant $ R \propto {m_e} $
It is given that $R' = 2R $
When we are talking about first excited state the electrons jump from second excited state to first and we will have to find out only one wavelength
So let us find out
For wavelength we have lower energy level two and higher energy level three which means $ {n_b} = 2,{n_i} = 3 $ and as given in question $ R' = 2R $
$
\dfrac{1}{\lambda } = 2R\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}} \right) \\
= 2R\left( {\dfrac{1}{4} - \dfrac{1}{9}} \right) \\
\dfrac{1}{\lambda } = \dfrac{{5R}}{{18}} \\
\lambda = \dfrac{{18}}{{5R}} \\
$ H
We have got this value in given option
Hence, the correct option is C.
Note:
Here, $ {n_i} $ will always be greater than $ {n_b} $ . For calculating wavelengths of spectral lines in any chemical element Rydberg’s formula is used which is based upon Bohr’s atomic model which explains the atomic spectrum of hydrogen and other atoms, ions.
Complete answer:
Now, let us consider Rydberg formula to solve this problem
Where the wavelength can be determined as:
$ \dfrac{1}{\lambda } = R\left( {\dfrac{1}{{{n_b}}} - \dfrac{1}{{{n_i}}}} \right) $ where, $ \lambda = $ wavelength, $ R = $ Rydberg constant, $ {n_b} = $ lower energy level $ {n_i} = $ higher energy level.
$ R $ is given as $ R = \dfrac{{{m_e}.{e^4}}}{{8{\varepsilon _0}c{h^3}}} $ where $ {m_e} $ is mass of electron, $ e = $ elementary charge, $ {\varepsilon _0} = $ permittivity of vacuum, $ c = $ speed of light in vacuum, $ h = $ planck's constant
It is given that electrons have the same charge so $ e $ will be constant, other elements in the formula are also constant such as $ h,{\varepsilon _0},c $ .
So we can say that Rydberg constant $ R \propto {m_e} $
It is given that $R' = 2R $
When we are talking about first excited state the electrons jump from second excited state to first and we will have to find out only one wavelength
So let us find out
For wavelength we have lower energy level two and higher energy level three which means $ {n_b} = 2,{n_i} = 3 $ and as given in question $ R' = 2R $
$
\dfrac{1}{\lambda } = 2R\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}} \right) \\
= 2R\left( {\dfrac{1}{4} - \dfrac{1}{9}} \right) \\
\dfrac{1}{\lambda } = \dfrac{{5R}}{{18}} \\
\lambda = \dfrac{{18}}{{5R}} \\
$ H
We have got this value in given option
Hence, the correct option is C.
Note:
Here, $ {n_i} $ will always be greater than $ {n_b} $ . For calculating wavelengths of spectral lines in any chemical element Rydberg’s formula is used which is based upon Bohr’s atomic model which explains the atomic spectrum of hydrogen and other atoms, ions.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE