Answer
Verified
450k+ views
Hint: In a chemical reaction, when two or more reactants are added they react with each other to give a product, and when they reach a state where the concentrations of reactants and products don’t change with time, we say the state of equilibrium is reached.
Complete step by step answer:
As per the question, at equilibrium, it is given that the number of moles of dihydrogen, iodine, and hydrogen iodide is 0.10 moles, 0.10 moles, and 0.74 moles respectively. At the equilibrium the chemical equation will be:
$2HI\overset {} \leftrightarrows {H_2} + {I_2}$
$0.74\;\;\; 0.10 \;\;\; 0.10$
The equilibrium constant ${K_C} = \dfrac{{[{H_2}][{I_2}]}}{{{{[HI]}^2}}}$
$ \Rightarrow {K_C} = \dfrac{{0.10 \times 0.10}}{{{{(0.74)}^2}}}$
$ \Rightarrow {K_C} = 0.0182$
If 0.50 mole of hydrogen iodide is added to the system the total number of moles of hydrogen iodide will be calculated as follows:
Let x moles of hydrogen iodide dissociated into x moles of hydrogen and x moles of iodine at equilibrium then the chemical reaction at equilibrium will be written as:
$2HI\overset {} \leftrightarrows {H_2} + {I_2}$
$ 1.24 \;\;\; 0.10 \;\;\; 0.10$
$(1.24-x)\;\;\; x \;\;\; x $
Now the equilibrium constant will be given as:
${K_C} = \dfrac{{[{H_2}][{I_2}]}}{{{{[HI]}^2}}}$
$ \Rightarrow {K_C} = \dfrac{{x \times x}}{{{{(1.24 - x)}^2}}}$
On putting the value of the equilibrium constant, the above equation becomes:
$ \Rightarrow 0.0182 = \dfrac{{x \times x}}{{{{(1.24 - x)}^2}}}$
$ \Rightarrow 0.0182 = \dfrac{{{x^2}}}{{{{(1.24 - x)}^2}}}$
Or
$ \Rightarrow 0.0182 = {\{ \dfrac{x}{{(1.24 - x)}}\} ^2}$
Taking square root on both side we get:
$ \Rightarrow \sqrt {0.0182} = \dfrac{x}{{(1.24 - x)}}$
$ \Rightarrow 0.1349 = \dfrac{x}{{(1.24 - x)}}$
$ \Rightarrow 0.1349 \times (1.24 - x) = x$
$ \Rightarrow 0.1672 - 0.1349x = x$
$ \Rightarrow 0.1672 = x + 0.1349x$
$ \Rightarrow 0.1672 = 1.1349x$
$ \Rightarrow \dfrac{{0.1672}}{{1.1349}} = x$
$ \Rightarrow x = 0.1473$
Thus, the concentration of hydrogen gas and iodine when equilibrium reestablished is 0.1473 mol/ltr and the concentration of hydrogen iodide is left = 0.124-0.1473= 0.016 mol/ltr
Note: We know that for a reaction equilibrium is reached when the rate of the forward reaction equals the rate of reverse reactions and we have a constant known as equilibrium constant which gives the ratio of products and reactants in a reaction when equilibrium is reached. Also, the equilibrium constant remains the same irrespective of initial concentration.
Complete step by step answer:
As per the question, at equilibrium, it is given that the number of moles of dihydrogen, iodine, and hydrogen iodide is 0.10 moles, 0.10 moles, and 0.74 moles respectively. At the equilibrium the chemical equation will be:
$2HI\overset {} \leftrightarrows {H_2} + {I_2}$
$0.74\;\;\; 0.10 \;\;\; 0.10$
The equilibrium constant ${K_C} = \dfrac{{[{H_2}][{I_2}]}}{{{{[HI]}^2}}}$
$ \Rightarrow {K_C} = \dfrac{{0.10 \times 0.10}}{{{{(0.74)}^2}}}$
$ \Rightarrow {K_C} = 0.0182$
If 0.50 mole of hydrogen iodide is added to the system the total number of moles of hydrogen iodide will be calculated as follows:
Let x moles of hydrogen iodide dissociated into x moles of hydrogen and x moles of iodine at equilibrium then the chemical reaction at equilibrium will be written as:
$2HI\overset {} \leftrightarrows {H_2} + {I_2}$
$ 1.24 \;\;\; 0.10 \;\;\; 0.10$
$(1.24-x)\;\;\; x \;\;\; x $
Now the equilibrium constant will be given as:
${K_C} = \dfrac{{[{H_2}][{I_2}]}}{{{{[HI]}^2}}}$
$ \Rightarrow {K_C} = \dfrac{{x \times x}}{{{{(1.24 - x)}^2}}}$
On putting the value of the equilibrium constant, the above equation becomes:
$ \Rightarrow 0.0182 = \dfrac{{x \times x}}{{{{(1.24 - x)}^2}}}$
$ \Rightarrow 0.0182 = \dfrac{{{x^2}}}{{{{(1.24 - x)}^2}}}$
Or
$ \Rightarrow 0.0182 = {\{ \dfrac{x}{{(1.24 - x)}}\} ^2}$
Taking square root on both side we get:
$ \Rightarrow \sqrt {0.0182} = \dfrac{x}{{(1.24 - x)}}$
$ \Rightarrow 0.1349 = \dfrac{x}{{(1.24 - x)}}$
$ \Rightarrow 0.1349 \times (1.24 - x) = x$
$ \Rightarrow 0.1672 - 0.1349x = x$
$ \Rightarrow 0.1672 = x + 0.1349x$
$ \Rightarrow 0.1672 = 1.1349x$
$ \Rightarrow \dfrac{{0.1672}}{{1.1349}} = x$
$ \Rightarrow x = 0.1473$
Thus, the concentration of hydrogen gas and iodine when equilibrium reestablished is 0.1473 mol/ltr and the concentration of hydrogen iodide is left = 0.124-0.1473= 0.016 mol/ltr
Note: We know that for a reaction equilibrium is reached when the rate of the forward reaction equals the rate of reverse reactions and we have a constant known as equilibrium constant which gives the ratio of products and reactants in a reaction when equilibrium is reached. Also, the equilibrium constant remains the same irrespective of initial concentration.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers