
In a convex nonagon all the diagonals are drawn. These diagonals intersect each other at $p$ points inside the nonagon, $q$ points on the nonagon and $r$ points outside the nonagon. Find the maximum possible value of $p$ . \[\]
Answer
487.2k+ views
Hint: Draw possible figures of the convex nonagon and use the concept of convexity to find that find out that diagonals can only intersect inside. Find how many vertices are required for one point of intersection of diagonals and then you can use a combination formula to get the result. \[\]
Complete step by step answer:
A nonagon is a polygon with 9 equal sides and 9 vertices. It is given in the question that the nonagon is convex; that means if we take any two points inside the nonagon and join the line segment all the points of the line segment will lie inside the nonagon. We also know that in a convex nonagon no angles are greater than straight angles. \[\]
The given question states that the diagonals intersect each other at $p$ points inside the nonagon, $q$ points on the nonagon and $r$ points outside the nonagon but asks only the maximum value of $p$. \[\]
Let us consider the possible diagonals inside the nonagon. Let us take alternating vertices (leaving one vertex and joining the next ) and join them to find a point of intersection. We show this in the following figure \[\]
Let us join a pair of vertices who have two vertices between them. We take another such pair of vertices and join them to find a point of intersection. We show this in the following figure. \[\]
We can also join a pair of alternating vertices and a pair of vertices with two vertices in between them. We show this by the following figure. \[\]
We draw the figure to illustrate that there are no points of intersection of diagonals outside the nonagon. We see that the nonagon is convex which means the diagonal can only intersect in the interior of the nonagon. \[\]
We also observe from the figure that we need at least 4 vertices to find one point of intersection. So we can choose any 4 out 9 vertices and can find a point of intersection. So we use the combination formula $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ for selecting any 4 vertices out 9 and get
\[^{9}{{C}_{4}}=\dfrac{9!}{4!5!}=\dfrac{9\times 8\times 7\times 6\times 5!}{1\times 2\times 3\times 4\times 5!}=126\]
So the maximum value of $p$ is 126.
Note: The important word in this problem is convex which means we do not have to care about points of intersection outside the nonagon which is the case of concave nonagon. The extra information about points of intersection on and outside nonagon is there to distract only.
Complete step by step answer:
A nonagon is a polygon with 9 equal sides and 9 vertices. It is given in the question that the nonagon is convex; that means if we take any two points inside the nonagon and join the line segment all the points of the line segment will lie inside the nonagon. We also know that in a convex nonagon no angles are greater than straight angles. \[\]
The given question states that the diagonals intersect each other at $p$ points inside the nonagon, $q$ points on the nonagon and $r$ points outside the nonagon but asks only the maximum value of $p$. \[\]
Let us consider the possible diagonals inside the nonagon. Let us take alternating vertices (leaving one vertex and joining the next ) and join them to find a point of intersection. We show this in the following figure \[\]

Let us join a pair of vertices who have two vertices between them. We take another such pair of vertices and join them to find a point of intersection. We show this in the following figure. \[\]

We can also join a pair of alternating vertices and a pair of vertices with two vertices in between them. We show this by the following figure. \[\]

We draw the figure to illustrate that there are no points of intersection of diagonals outside the nonagon. We see that the nonagon is convex which means the diagonal can only intersect in the interior of the nonagon. \[\]
We also observe from the figure that we need at least 4 vertices to find one point of intersection. So we can choose any 4 out 9 vertices and can find a point of intersection. So we use the combination formula $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ for selecting any 4 vertices out 9 and get
\[^{9}{{C}_{4}}=\dfrac{9!}{4!5!}=\dfrac{9\times 8\times 7\times 6\times 5!}{1\times 2\times 3\times 4\times 5!}=126\]
So the maximum value of $p$ is 126.
Note: The important word in this problem is convex which means we do not have to care about points of intersection outside the nonagon which is the case of concave nonagon. The extra information about points of intersection on and outside nonagon is there to distract only.
Recently Updated Pages
How do you factor x2 + x 20 0 class 9 maths CBSE

How do you solve y6x and 2x+3y20 using substitutio class 9 maths CBSE

Chipko movement originated in Gopeshwar in A 1953 B class 9 biology CBSE

The adjacent sides in the parallelogram are supplementary class 9 maths CBSE

The compound used in plastic industry is A Vinyl acetate class 9 chemistry CBSE

How do you solve for y in 2left y dfrac12 right 4left class 9 maths CBSE

Trending doubts
Worlds largest producer of jute is aBangladesh bIndia class 9 social science CBSE

Distinguish between Conventional and nonconventional class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What was the Treaty of Constantinople of 1832 class 9 social science CBSE

What is a legitimate government class 9 social science CBSE

Describe the 4 stages of the Unification of German class 9 social science CBSE
