Answer
Verified
477.3k+ views
Hint: Find the relation between X and Y with the formula $\dfrac{X}{Y}=\dfrac{l}{100-l}$, where l is balanced from X. Then with this relation, find the new balanced length when the resistance X is replaced with 4X.
Formula used:
$\dfrac{X}{Y}=\dfrac{l}{100-l}$
Complete step-by-step answer:
Let us first understand the application of a meter bridge. A meter bridge is a device to find the relation between two unknown resistances or to find the value of an unknown resistance with help of a known resistance. It works on the principle of Wheatstone bridge. The device has a wire, one meter long with uniform resistance and to slots to attach the two resistances. It has a jockey with one end attached to the junction of the two resistances. The other end is used to balance the bridge.
A diagram of a meter bridge is given below.
When the ammeter reads zero current, the bridge is balanced. We also call this a null point. Ats this point, the relation between the two resistances is given as:
$\dfrac{X}{Y}=\dfrac{l}{100-l}$, where X and Y are the values of the resistances.
Now, in the question, it is given that l=20cm.
Therefore, $\dfrac{X}{Y}=\dfrac{20}{100-20}=\dfrac{20}{80}=\dfrac{1}{4}$.
$\Rightarrow 4X=Y$.
The second case consists of resistances of 4X and Y. Let 4X=R and Y=S.
Hence, $\dfrac{R}{S}=\dfrac{l}{100-l}$
$\Rightarrow \dfrac{R}{S}=\dfrac{4X}{Y}=\dfrac{l}{100-l}$.
But we know that Y=4X.
Therefore,
$\dfrac{4X}{4X}=\dfrac{l}{100-l}$
$\Rightarrow 1=\dfrac{l}{100-l}$.
This implies that l=50 cm.
Therefore, when the resistance X is replaced with 4X, the new null point is obtained at a position of 50 cm from the end that has resistance 4X.
Hence, the correct option is C.
Note: The reason that we get a null point or zero current across P and Q is that the potential difference across P and Q is zero.
Please note that relation XY, then the position of the null point will also change. The smaller length is always in parallel with the resistance that has smaller value.
Formula used:
$\dfrac{X}{Y}=\dfrac{l}{100-l}$
Complete step-by-step answer:
Let us first understand the application of a meter bridge. A meter bridge is a device to find the relation between two unknown resistances or to find the value of an unknown resistance with help of a known resistance. It works on the principle of Wheatstone bridge. The device has a wire, one meter long with uniform resistance and to slots to attach the two resistances. It has a jockey with one end attached to the junction of the two resistances. The other end is used to balance the bridge.
A diagram of a meter bridge is given below.
When the ammeter reads zero current, the bridge is balanced. We also call this a null point. Ats this point, the relation between the two resistances is given as:
$\dfrac{X}{Y}=\dfrac{l}{100-l}$, where X and Y are the values of the resistances.
Now, in the question, it is given that l=20cm.
Therefore, $\dfrac{X}{Y}=\dfrac{20}{100-20}=\dfrac{20}{80}=\dfrac{1}{4}$.
$\Rightarrow 4X=Y$.
The second case consists of resistances of 4X and Y. Let 4X=R and Y=S.
Hence, $\dfrac{R}{S}=\dfrac{l}{100-l}$
$\Rightarrow \dfrac{R}{S}=\dfrac{4X}{Y}=\dfrac{l}{100-l}$.
But we know that Y=4X.
Therefore,
$\dfrac{4X}{4X}=\dfrac{l}{100-l}$
$\Rightarrow 1=\dfrac{l}{100-l}$.
This implies that l=50 cm.
Therefore, when the resistance X is replaced with 4X, the new null point is obtained at a position of 50 cm from the end that has resistance 4X.
Hence, the correct option is C.
Note: The reason that we get a null point or zero current across P and Q is that the potential difference across P and Q is zero.
Please note that relation X
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers