
In a right-angled triangle ABC, if the hypotenuse $AB=p$ , then what \[\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}+\overrightarrow{CA}\cdot \overrightarrow{CB}\] equals to
A. $p$
B. \[{{p}^{2}}\]
C. \[2{{p}^{2}}\]
D. \[\dfrac{{{p}^{2}}}{2}\]
Answer
574.5k+ views
Hint: We have to find the value of \[\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}+\overrightarrow{CA}\cdot \overrightarrow{CB}\] . From, the figure, \[\overrightarrow{AC}\bot \overrightarrow{CB}\] , \[\overrightarrow{CA}\bot \overrightarrow{CB}\] and using the rule of vectors, we will get \[\overrightarrow{CA}\cdot \overrightarrow{CB}=0\] . Substituting these values in \[\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}+\overrightarrow{CA}\cdot \overrightarrow{CB}\] and after some rearrangements, use the using the triangle law of vector addition \[\left( \overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{CB} \right)\] and the property $\overrightarrow{a\cdot }\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}$ , the required value will be obtained.
Complete step by step answer:
We have to find the value of \[\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}+\overrightarrow{CA}\cdot \overrightarrow{CB}\] .
From the figure,
\[\overrightarrow{AC}\bot \overrightarrow{CB}\]
And \[\overrightarrow{CA}\bot \overrightarrow{CB}\]
We know that \[\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\cdot \left| \overrightarrow{b} \right|\cdot \cos \theta \]
\[\Rightarrow \overrightarrow{CA}\cdot \overrightarrow{CB}=\left| \overrightarrow{CA} \right|\cdot \left| \overrightarrow{CB} \right|\cos \theta \]
This can be written as
\[\dfrac{\overrightarrow{CA}\cdot \overrightarrow{CB}}{\left| \overrightarrow{CA} \right|\cdot \left| \overrightarrow{CB} \right|}=\cos \theta \]
Given that the triangle is a right-angled triangle. Hence,
\[\dfrac{\overrightarrow{CA}\cdot \overrightarrow{CB}}{\left| \overrightarrow{CA} \right|\cdot \left| \overrightarrow{CB} \right|}=\cos 90=0\]
This can be written as
\[\overrightarrow{CA}\cdot \overrightarrow{CB}=0...(i)\]
Let us consider \[\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}+\overrightarrow{CA}\cdot \overrightarrow{CB}\]
Substituting \[(i)\] in the above equation, we will get
\[\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}+0\]
$=\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}$
We know that \[\overrightarrow{AB}=-\overrightarrow{BA}\] . So the above equation can be written as
\[\overrightarrow{AB}\cdot \overrightarrow{AC}-\overrightarrow{AB}\cdot \overrightarrow{BC}\]
Taking $\overrightarrow{AB}$ common, we will get
\[\overrightarrow{AB}\cdot \overrightarrow{(AC}-\overrightarrow{BC})\]
We know that \[\overrightarrow{BC}=-\overrightarrow{CB}\] . So the above equation can be written as
\[\overrightarrow{AB}\cdot \overrightarrow{(AC}+\overrightarrow{CB})...(ii)\]
Using triangle law of vector addition, that is, for a triangle shown below, $\overrightarrow{A}=\overrightarrow{B}+\overrightarrow{C}$
Similarly, we can express the same for the given triangle. That is,
\[\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{CB}\]
Hence, $(ii)$ can be written as
\[\overrightarrow{AB}\cdot \overrightarrow{AB}\]
We know that $\overrightarrow{a\cdot }\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}$
Hence, \[\overrightarrow{AB}\cdot \overrightarrow{AB}={{\left| \overrightarrow{AB} \right|}^{2}}\]
$={{\left| p \right|}^{2}}={{p}^{2}}$
So, the correct answer is “Option B”.
Note: The students can make an error if they don’t know how to write the dot product of two vectors. Also, the property of vectors and triangular law of vector addition is also very important to solve this question and hence need to be very thorough in this. There can also be a chance to make error in the equation \[\dfrac{\overrightarrow{CA}\cdot \overrightarrow{CB}}{\left| \overrightarrow{CA} \right|\cdot \left| \overrightarrow{CB} \right|}=\cos \theta \] by writing $\sin \theta $ instead of $\cos \theta $ .
Complete step by step answer:
We have to find the value of \[\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}+\overrightarrow{CA}\cdot \overrightarrow{CB}\] .
From the figure,
\[\overrightarrow{AC}\bot \overrightarrow{CB}\]
And \[\overrightarrow{CA}\bot \overrightarrow{CB}\]
We know that \[\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\cdot \left| \overrightarrow{b} \right|\cdot \cos \theta \]
\[\Rightarrow \overrightarrow{CA}\cdot \overrightarrow{CB}=\left| \overrightarrow{CA} \right|\cdot \left| \overrightarrow{CB} \right|\cos \theta \]
This can be written as
\[\dfrac{\overrightarrow{CA}\cdot \overrightarrow{CB}}{\left| \overrightarrow{CA} \right|\cdot \left| \overrightarrow{CB} \right|}=\cos \theta \]
Given that the triangle is a right-angled triangle. Hence,
\[\dfrac{\overrightarrow{CA}\cdot \overrightarrow{CB}}{\left| \overrightarrow{CA} \right|\cdot \left| \overrightarrow{CB} \right|}=\cos 90=0\]
This can be written as
\[\overrightarrow{CA}\cdot \overrightarrow{CB}=0...(i)\]
Let us consider \[\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}+\overrightarrow{CA}\cdot \overrightarrow{CB}\]
Substituting \[(i)\] in the above equation, we will get
\[\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}+0\]
$=\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{BA}\cdot \overrightarrow{BC}$
We know that \[\overrightarrow{AB}=-\overrightarrow{BA}\] . So the above equation can be written as
\[\overrightarrow{AB}\cdot \overrightarrow{AC}-\overrightarrow{AB}\cdot \overrightarrow{BC}\]
Taking $\overrightarrow{AB}$ common, we will get
\[\overrightarrow{AB}\cdot \overrightarrow{(AC}-\overrightarrow{BC})\]
We know that \[\overrightarrow{BC}=-\overrightarrow{CB}\] . So the above equation can be written as
\[\overrightarrow{AB}\cdot \overrightarrow{(AC}+\overrightarrow{CB})...(ii)\]
Using triangle law of vector addition, that is, for a triangle shown below, $\overrightarrow{A}=\overrightarrow{B}+\overrightarrow{C}$
Similarly, we can express the same for the given triangle. That is,
\[\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{CB}\]
Hence, $(ii)$ can be written as
\[\overrightarrow{AB}\cdot \overrightarrow{AB}\]
We know that $\overrightarrow{a\cdot }\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}$
Hence, \[\overrightarrow{AB}\cdot \overrightarrow{AB}={{\left| \overrightarrow{AB} \right|}^{2}}\]
$={{\left| p \right|}^{2}}={{p}^{2}}$
So, the correct answer is “Option B”.
Note: The students can make an error if they don’t know how to write the dot product of two vectors. Also, the property of vectors and triangular law of vector addition is also very important to solve this question and hence need to be very thorough in this. There can also be a chance to make error in the equation \[\dfrac{\overrightarrow{CA}\cdot \overrightarrow{CB}}{\left| \overrightarrow{CA} \right|\cdot \left| \overrightarrow{CB} \right|}=\cos \theta \] by writing $\sin \theta $ instead of $\cos \theta $ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

