Answer
Verified
445.5k+ views
Hint: his question uses the concept of electric potential. You need to apply the formula which establishes the relation between the electric potential and electric field. According to the formula, the electric field varies linearly with the potential and inversely with the distance. You are required to substitute the values in the formula and need to calculate the electric field at the given point.
Complete step by step answer:
Given:
The potential at a point is given as $V = \dfrac{{343}}{r}$.
The coordinates of the point is $r = 3\hat i + 2\hat j + 6\hat k$.
As we know that the expression for the electric field is given as shown below,
$\vec E = \dfrac{V}{r} \cdot \hat r$
Here, $V$ is the potential difference and $r$ is the distance from the origin.
Moreover we know that that, $\hat r$can be written as,
$\hat r = \dfrac{{\vec r}}{r}$
So by combining above two expression, we can write it as shown below,
$
\vec E = \dfrac{V}{r} \cdot \dfrac{{\vec r}}{r}\\
\implies \vec E = \dfrac{V}{{{{\left| {\vec r} \right|}^2}}} \cdot \vec r
$
We need to substitute the value of potential in the above expression,
$
\vec E = \dfrac{{\dfrac{{343}}{r}}}{{{{\left| {\vec r} \right|}^2}}} \cdot \vec r\\
\implies \vec E = \dfrac{{343}}{{{{\left| {\vec r} \right|}^3}}} \cdot \vec r.....\left( 1 \right)
$
We can calculate the value of ${\left| {\vec r} \right|^3}$ as shown,
$
\left| {\vec r} \right| = {\left( {\sqrt {{{\left( {3\hat i} \right)}^2} + {{\left( {2\hat j} \right)}^2} + {{\left( {6\hat k} \right)}^2}} } \right)^3}\\
\implies \left| {\vec r} \right| = 343
$
Now we substitute the value of ${\left| {\vec r} \right|^3}$ in equation number (1), to calculate the value of the electric field at the given point.
$
\vec E = \dfrac{{343}}{{343}} \cdot \left( {3\hat i + 2\hat j + 6\hat k} \right)\\
\implies \vec E = 3\hat i + 2\hat j + 6\hat k
$
Therefore, the electric field at point $3\hat i + 2\hat j + 6\hat k$ will be $3\hat i + 2\hat j + 6\hat k$.
Thus, option (B) is correct and electric field is $r = 3\hat i + 2\hat j + 6\hat k$.
Note:
The electric potential is the amount of potential energy at a point per unit charge, and the electric field is the region near a particle that is having some charge. Moreover, in the given question, you can make a mistake in the calculation part, so you need to be careful while working with vector products in the calculation.
Complete step by step answer:
Given:
The potential at a point is given as $V = \dfrac{{343}}{r}$.
The coordinates of the point is $r = 3\hat i + 2\hat j + 6\hat k$.
As we know that the expression for the electric field is given as shown below,
$\vec E = \dfrac{V}{r} \cdot \hat r$
Here, $V$ is the potential difference and $r$ is the distance from the origin.
Moreover we know that that, $\hat r$can be written as,
$\hat r = \dfrac{{\vec r}}{r}$
So by combining above two expression, we can write it as shown below,
$
\vec E = \dfrac{V}{r} \cdot \dfrac{{\vec r}}{r}\\
\implies \vec E = \dfrac{V}{{{{\left| {\vec r} \right|}^2}}} \cdot \vec r
$
We need to substitute the value of potential in the above expression,
$
\vec E = \dfrac{{\dfrac{{343}}{r}}}{{{{\left| {\vec r} \right|}^2}}} \cdot \vec r\\
\implies \vec E = \dfrac{{343}}{{{{\left| {\vec r} \right|}^3}}} \cdot \vec r.....\left( 1 \right)
$
We can calculate the value of ${\left| {\vec r} \right|^3}$ as shown,
$
\left| {\vec r} \right| = {\left( {\sqrt {{{\left( {3\hat i} \right)}^2} + {{\left( {2\hat j} \right)}^2} + {{\left( {6\hat k} \right)}^2}} } \right)^3}\\
\implies \left| {\vec r} \right| = 343
$
Now we substitute the value of ${\left| {\vec r} \right|^3}$ in equation number (1), to calculate the value of the electric field at the given point.
$
\vec E = \dfrac{{343}}{{343}} \cdot \left( {3\hat i + 2\hat j + 6\hat k} \right)\\
\implies \vec E = 3\hat i + 2\hat j + 6\hat k
$
Therefore, the electric field at point $3\hat i + 2\hat j + 6\hat k$ will be $3\hat i + 2\hat j + 6\hat k$.
Thus, option (B) is correct and electric field is $r = 3\hat i + 2\hat j + 6\hat k$.
Note:
The electric potential is the amount of potential energy at a point per unit charge, and the electric field is the region near a particle that is having some charge. Moreover, in the given question, you can make a mistake in the calculation part, so you need to be careful while working with vector products in the calculation.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE