Answer
Verified
459.3k+ views
Hint: In this question, First of all, try to recollect the settings of a cricket team and the number of players like batsmen, bowlers, all-rounders, and wicket keepers.
Also, we find out each group for selecting the given data.
Then multiplying each group by using the formula.
Finally, we get the required answer.
Formula used:
${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
Complete step by step answer:
In the given question there are players =$25$ in which batsmen =$10$, bowlers =$8$, all-rounder =$5$ and wicket keepers $ = 2$
We have to find out the $11$ players required $5$ batsmen, $3$ all-rounder, $2$ bowlers, and $1$ wicketkeeper.
Here we have to use the combination formula that is ${}^n{C_r}$:
Now we find that the number of each group and by multiplying the term we get the require answer
So we can write it as,
Number of ways $ = $ (number of ways of choosing $5$ batsmen from $10$)$ \times $ (Number of ways of choosing $3$ all-rounders from $2$ bowlers from $8$) $ \times $ (number of ways of choosing $1$wicket keeper from $2$)
So we can write it as by using the formula
Total number of ways $ = {}^{10}{C_5} \times {}^8{C_2} \times {}^5{C_3} \times {}^2{C_1}$
Now substitute it by the formula ${}^n{C_r} = \dfrac{{n!}}{{r!(n - 1)!}}$ and we get,
$\Rightarrow \dfrac{{10!}}{{5!5!}} \times \dfrac{{8!}}{{6!2!}} \times \dfrac{{5!}}{{3!2!}} \times \dfrac{{2!}}{{1!1!}}$
Here we split the factorial term we get is
\[ = \dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5!}}{{5! \times 5 \times 4 \times 3 \times 2 \times 1}} \times \dfrac{{8 \times 7 \times 6!}}{{6! \times 2 \times 1}} \times \dfrac{{5 \times 4 \times 3!}}{{3! \times 2 \times 1}} \times \dfrac{{2 \times 1!}}{{1! \times 1}}\]
After cancelling out the same terms from the numerator and denominator
\[ = \dfrac{{10 \times 9 \times 8 \times 7 \times 6}}{{5 \times 4 \times 3 \times 2 \times 1}} \times \dfrac{{8 \times 7}}{{2 \times 1}} \times \dfrac{{5 \times 4}}{{2 \times 1}} \times \dfrac{2}{1}\]
On multiply the numerator and denominator we get,
$ = 252 \times 28 \times 10 \times 2$
After doing multiplying the all the terms together
$ = 141120$
Hence, the correct option is $(D)$ that is $141120$.
Note:
Whenever we get this type of problem the key concept of solving is, we have to understand the laws of permutation and combination then we will be able to answer these kinds of questions.
We have used the concept of combination is
${}^n{C_r} = \dfrac{{n!}}{{r!)(n - r)!}}$$ = \dfrac{{n(n - 1)(n - 2)(n - 3)..........(n - (n - 1)!}}{{r(r - 1)(r - 2)........(r - (r - 1)!n(n - 1)(n - 2)..........(n - (n - 1)!}}$.
Students should read the question properly and also know how to apply the conditions, to ensure that the solution does not go wrong.
Also, we find out each group for selecting the given data.
Then multiplying each group by using the formula.
Finally, we get the required answer.
Formula used:
${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
Complete step by step answer:
In the given question there are players =$25$ in which batsmen =$10$, bowlers =$8$, all-rounder =$5$ and wicket keepers $ = 2$
We have to find out the $11$ players required $5$ batsmen, $3$ all-rounder, $2$ bowlers, and $1$ wicketkeeper.
Here we have to use the combination formula that is ${}^n{C_r}$:
Now we find that the number of each group and by multiplying the term we get the require answer
So we can write it as,
Number of ways $ = $ (number of ways of choosing $5$ batsmen from $10$)$ \times $ (Number of ways of choosing $3$ all-rounders from $2$ bowlers from $8$) $ \times $ (number of ways of choosing $1$wicket keeper from $2$)
So we can write it as by using the formula
Total number of ways $ = {}^{10}{C_5} \times {}^8{C_2} \times {}^5{C_3} \times {}^2{C_1}$
Now substitute it by the formula ${}^n{C_r} = \dfrac{{n!}}{{r!(n - 1)!}}$ and we get,
$\Rightarrow \dfrac{{10!}}{{5!5!}} \times \dfrac{{8!}}{{6!2!}} \times \dfrac{{5!}}{{3!2!}} \times \dfrac{{2!}}{{1!1!}}$
Here we split the factorial term we get is
\[ = \dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5!}}{{5! \times 5 \times 4 \times 3 \times 2 \times 1}} \times \dfrac{{8 \times 7 \times 6!}}{{6! \times 2 \times 1}} \times \dfrac{{5 \times 4 \times 3!}}{{3! \times 2 \times 1}} \times \dfrac{{2 \times 1!}}{{1! \times 1}}\]
After cancelling out the same terms from the numerator and denominator
\[ = \dfrac{{10 \times 9 \times 8 \times 7 \times 6}}{{5 \times 4 \times 3 \times 2 \times 1}} \times \dfrac{{8 \times 7}}{{2 \times 1}} \times \dfrac{{5 \times 4}}{{2 \times 1}} \times \dfrac{2}{1}\]
On multiply the numerator and denominator we get,
$ = 252 \times 28 \times 10 \times 2$
After doing multiplying the all the terms together
$ = 141120$
Hence, the correct option is $(D)$ that is $141120$.
Note:
Whenever we get this type of problem the key concept of solving is, we have to understand the laws of permutation and combination then we will be able to answer these kinds of questions.
We have used the concept of combination is
${}^n{C_r} = \dfrac{{n!}}{{r!)(n - r)!}}$$ = \dfrac{{n(n - 1)(n - 2)(n - 3)..........(n - (n - 1)!}}{{r(r - 1)(r - 2)........(r - (r - 1)!n(n - 1)(n - 2)..........(n - (n - 1)!}}$.
Students should read the question properly and also know how to apply the conditions, to ensure that the solution does not go wrong.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers