Answer
Verified
391.3k+ views
Hint- In order to find the value of a, b and c, we will use the property as all inner angles of a regular pentagon is ${108^0}$ and by using the data of the given figure we will proceed further.
Complete step-by-step answer:
As we know that, all inner angles of a regular pentagon is ${108^0}$
Therefore $\angle B = {108^0}$
The pentagon is divided into 3 equal parts and the angles also
Therefore the value of angle b is
$b = \dfrac{{{{108}^0}}}{3} = {36^0}{\text{ [}}\because \angle {\text{B = 3b]}}$
$\Delta EBD$ is an isosceles triangle and sum of all angles of and sum of all angles of triangle is ${180^0}$
Therefore
$b + c + \angle DEB = {180^0}$
As we know that in isosceles triangle the angles opposite to equal sides are equal
Therefore angle $c = \angle DEB$
$
\Rightarrow b + c + c = {180^0} \\
\Rightarrow 2c + b = {180^0} \\
$
Substituting the value of b in the above equation
$
\Rightarrow 2c + {36^0} = {180^0} \\
\Rightarrow 2c = {180^0} - {36^0} \\
\Rightarrow c = \dfrac{{{{144}^0}}}{2} = {72^0} \\
$
As we know that alternate angles are equal and
Here a and b are alternate angles therefore
$
a = b \\
a = {36^0} \\
$
Hence, angles a, b and c are ${36^0},{36^0}and{\text{ }}{72^0}$ respectively.
Note- In order to solve these types of questions, remember the properties of triangles, squares, pentagons etc. Also remember the properties of angles and parallel lines such as alternate angles, corresponding angles, vertically opposite angles and about transverse lines and more. Draw the figure first and try to solve for a single angle first and then proceed further.
Complete step-by-step answer:
As we know that, all inner angles of a regular pentagon is ${108^0}$
Therefore $\angle B = {108^0}$
The pentagon is divided into 3 equal parts and the angles also
Therefore the value of angle b is
$b = \dfrac{{{{108}^0}}}{3} = {36^0}{\text{ [}}\because \angle {\text{B = 3b]}}$
$\Delta EBD$ is an isosceles triangle and sum of all angles of and sum of all angles of triangle is ${180^0}$
Therefore
$b + c + \angle DEB = {180^0}$
As we know that in isosceles triangle the angles opposite to equal sides are equal
Therefore angle $c = \angle DEB$
$
\Rightarrow b + c + c = {180^0} \\
\Rightarrow 2c + b = {180^0} \\
$
Substituting the value of b in the above equation
$
\Rightarrow 2c + {36^0} = {180^0} \\
\Rightarrow 2c = {180^0} - {36^0} \\
\Rightarrow c = \dfrac{{{{144}^0}}}{2} = {72^0} \\
$
As we know that alternate angles are equal and
Here a and b are alternate angles therefore
$
a = b \\
a = {36^0} \\
$
Hence, angles a, b and c are ${36^0},{36^0}and{\text{ }}{72^0}$ respectively.
Note- In order to solve these types of questions, remember the properties of triangles, squares, pentagons etc. Also remember the properties of angles and parallel lines such as alternate angles, corresponding angles, vertically opposite angles and about transverse lines and more. Draw the figure first and try to solve for a single angle first and then proceed further.
Recently Updated Pages
The aqueous solution of aluminium chloride is acidic due to
In order to prevent the spoilage of potato chips they are packed in plastic bags in an atmosphere of
When NaCl is dissolved in water the sodium ion becomes
Give the summary of the story the enchanted pool class 10 english ICSE
What is the message of the poem Nine Gold Medals class 10 english ICSE
Which body formulates the foreign policy of India class 10 social science ICSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it
Difference Between Plant Cell and Animal Cell
Distinguish between Conventional and nonconventional class 9 social science CBSE
What is the factorial of 5 class 10 maths CBSE
How many hours before the closure of election must class 9 social science CBSE
Write the 6 fundamental rights of India and explain in detail