In the given figure, $\dfrac{{PK}}{{KS}} = \dfrac{{PT}}{{TR}}$ and $\angle PKT = \angle PRS$. Prove that $\Delta PSR$ is an isosceles triangle.
Answer
Verified
513.6k+ views
Hint: Try to solve using SAS congruence postulate.
Given: $\dfrac{{PK}}{{KS}} = \dfrac{{PT}}{{TR}}$ and $\angle PKT = \angle PRS$
To prove that $\Delta PSR$ is an isosceles triangle.
An isosceles triangle is a triangle with (at least) two equal sides.
Proof:
$\dfrac{{PK}}{{KS}} = \dfrac{{PT}}{{TR}}\left( {\because {\text{Given}}} \right)$
Rewriting above as:
$\dfrac{{KS}}{{KP}} = \dfrac{{RT}}{{PT}}$
Adding 1 both sides, we get
$
\Rightarrow \dfrac{{KS}}{{KP}} + 1 = \dfrac{{RT}}{{PT}} + 1 \\
\Rightarrow \dfrac{{KS + KP}}{{KP}} = \dfrac{{RT + PT}}{{PT}} \\
$
Now, from the figure, we can say that \[KS + KP = PS\] and \[RT + PT = PR\].
$\therefore \dfrac{{PS}}{{KP}} = \dfrac{{PR}}{{PT}}$
Now, $\angle KPT$ is common angle to $\Delta KPT$ and $\Delta SPR$
SAS congruence postulate states that if two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then these two triangles are congruent and vice versa.
Using SAS similarity of triangles, $\Delta KPT \sim \Delta SPR$
$
\Rightarrow \angle PKT = \angle PSR \\
\Rightarrow \angle PRS = \angle PSR{\text{ }}\left( {\because \angle PKT = \angle PRS} \right) \\
$
Since, two angles of $\Delta PSR$are equal, it is an isosceles triangle.
Hence Proved.
Note: Whenever you need to prove sides as equal of a triangle, always try to prove triangles as similar. Also, we have the methods SSS (side-side-side), SAS (side-angle-side), ASA (angle-side-angle), AAS (angle-angle-side) and AAA (angle-angle-angle), to prove that two triangles are similar.
Given: $\dfrac{{PK}}{{KS}} = \dfrac{{PT}}{{TR}}$ and $\angle PKT = \angle PRS$
To prove that $\Delta PSR$ is an isosceles triangle.
An isosceles triangle is a triangle with (at least) two equal sides.
Proof:
$\dfrac{{PK}}{{KS}} = \dfrac{{PT}}{{TR}}\left( {\because {\text{Given}}} \right)$
Rewriting above as:
$\dfrac{{KS}}{{KP}} = \dfrac{{RT}}{{PT}}$
Adding 1 both sides, we get
$
\Rightarrow \dfrac{{KS}}{{KP}} + 1 = \dfrac{{RT}}{{PT}} + 1 \\
\Rightarrow \dfrac{{KS + KP}}{{KP}} = \dfrac{{RT + PT}}{{PT}} \\
$
Now, from the figure, we can say that \[KS + KP = PS\] and \[RT + PT = PR\].
$\therefore \dfrac{{PS}}{{KP}} = \dfrac{{PR}}{{PT}}$
Now, $\angle KPT$ is common angle to $\Delta KPT$ and $\Delta SPR$
SAS congruence postulate states that if two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then these two triangles are congruent and vice versa.
Using SAS similarity of triangles, $\Delta KPT \sim \Delta SPR$
$
\Rightarrow \angle PKT = \angle PSR \\
\Rightarrow \angle PRS = \angle PSR{\text{ }}\left( {\because \angle PKT = \angle PRS} \right) \\
$
Since, two angles of $\Delta PSR$are equal, it is an isosceles triangle.
Hence Proved.
Note: Whenever you need to prove sides as equal of a triangle, always try to prove triangles as similar. Also, we have the methods SSS (side-side-side), SAS (side-angle-side), ASA (angle-side-angle), AAS (angle-angle-side) and AAA (angle-angle-angle), to prove that two triangles are similar.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Collective noun a of sailors class 7 english CBSE
Convert 200 Million dollars in rupees class 7 maths CBSE
Fill in the blanks with appropriate modals a Drivers class 7 english CBSE
What are the controls affecting the climate of Ind class 7 social science CBSE
The southernmost point of the Indian mainland is known class 7 social studies CBSE