Answer
Verified
468.9k+ views
Hint: Here we will use the law of similarity for two triangles. This law will establish the ratio of corresponding sides. This helps to find the length of AD. Also make use of the pythagoras theorem to find the lengths of the sides.
Complete step-by-step answer:
In the above diagram first we will compute the length of BC by using Pythagoras theorem.
AB= 5 cm and AC = 12 cm
BC = ?
According to the Pythagoras theorem for right angled triangle ABC, we have,
\[
B{C^2} = A{B^2} + A{C^2} \\
\Rightarrow B{C^2} = {5^2} + {12^2} \\
\Rightarrow BC = \sqrt {169} \\
\Rightarrow BC = 13cm \\
\]
Now in $\vartriangle ABC and \vartriangle ADC$
$\angle C$ is a common angle.
And $\angle A = \angle D = {90^0}$ (AD is perpendicular to BC)
Therefore, $\vartriangle ABC \sim \vartriangle ADC$ means both triangles are similar by AA similarity criterion.
Therefore, the property of similar triangles ratio of the corresponding sides of the two triangles will be equal. Thus in other words, we can write,
$
\dfrac{{AD}}{{AB}} = \dfrac{{AC}}{{BC}} \\
\Rightarrow AD = \dfrac{{AB \times AC}}{{BC}} \\
\Rightarrow AD = \dfrac{{12 \times 5}}{{13}} \\
\Rightarrow AD = \dfrac{{60}}{{13}} \\
$(Transforming by algebra rules and putting the known values.)
Thus the length of AD will be $\dfrac{{60}}{{13}}$cm.
Therefore, the correct answer is option (1).
Note: This question is a simple application of the law of similarity in the triangles. Furthermore many problems of geometry can be solved by using these laws. Not only can this one find the missing angles of any triangle. One interesting fact about the similar triangles that their areas are also in the ratio of their altitudes also.
Complete step-by-step answer:
In the above diagram first we will compute the length of BC by using Pythagoras theorem.
AB= 5 cm and AC = 12 cm
BC = ?
According to the Pythagoras theorem for right angled triangle ABC, we have,
\[
B{C^2} = A{B^2} + A{C^2} \\
\Rightarrow B{C^2} = {5^2} + {12^2} \\
\Rightarrow BC = \sqrt {169} \\
\Rightarrow BC = 13cm \\
\]
Now in $\vartriangle ABC and \vartriangle ADC$
$\angle C$ is a common angle.
And $\angle A = \angle D = {90^0}$ (AD is perpendicular to BC)
Therefore, $\vartriangle ABC \sim \vartriangle ADC$ means both triangles are similar by AA similarity criterion.
Therefore, the property of similar triangles ratio of the corresponding sides of the two triangles will be equal. Thus in other words, we can write,
$
\dfrac{{AD}}{{AB}} = \dfrac{{AC}}{{BC}} \\
\Rightarrow AD = \dfrac{{AB \times AC}}{{BC}} \\
\Rightarrow AD = \dfrac{{12 \times 5}}{{13}} \\
\Rightarrow AD = \dfrac{{60}}{{13}} \\
$(Transforming by algebra rules and putting the known values.)
Thus the length of AD will be $\dfrac{{60}}{{13}}$cm.
Therefore, the correct answer is option (1).
Note: This question is a simple application of the law of similarity in the triangles. Furthermore many problems of geometry can be solved by using these laws. Not only can this one find the missing angles of any triangle. One interesting fact about the similar triangles that their areas are also in the ratio of their altitudes also.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE