Answer
Verified
449.4k+ views
Hint:
Here we have to integrate the given function. We will first calculate the value of function \[\left[ {\sin x} \right]\] for \[x \in \left( {0,\dfrac{\pi }{2}} \right)\]. We will then find the value of the greatest integer function by integrating the given function with the given range.
Complete step by step solution:
Let \[I\] be the value of the given integration.
\[I = \int {\left[ {\sin x} \right]} dx\]……..\[\left( 1 \right)\]
It is given that \[x\] varies from 0 to \[\dfrac{\pi }{2}\]. We know the range of function \[\sin x\] for \[x \in \left( {0,\dfrac{\pi }{2}} \right)\] is \[\left( {0,1} \right)\].
But first we need the value or range of the function \[\left[ {\sin x} \right]\].
Since, the value of the function \[\sin x\] varies from 0 to 1, so we have to calculate the value of the greatest integer function of number less than 1 or more than zero.
We know the value of the greatest integer function of a number less than 1 or more than zero is zero. Therefore, the value of the function \[\left[ {\sin x} \right]\] is zero.
We will substitute the value of \[\left[ {\sin x} \right]\] in the equation (1), we get
\[I = \int {0.} dx\]
Integrating the term, we get
\[I = 0\]
Hence, the correct option is A.
Note:
Here we have calculated the value of the greatest integer function \[\left[ {\sin x} \right]\]. Greatest integer function is denoted by \[\left[ . \right]\]. When the intervals are in the form \[\left( {n,n + 1} \right)\], then the value of the greatest integer function is \[n\]. In the same way, we have found the value of \[\left[ {\sin x} \right]\]. The range of \[\sin x\] here is \[\left( {0,1} \right)\]. Thus, from the definition, we got the value of \[\left[ {\sin x} \right]\] is 0. We need to keep in mind that the integration of zero is equal to zero.
Here we have to integrate the given function. We will first calculate the value of function \[\left[ {\sin x} \right]\] for \[x \in \left( {0,\dfrac{\pi }{2}} \right)\]. We will then find the value of the greatest integer function by integrating the given function with the given range.
Complete step by step solution:
Let \[I\] be the value of the given integration.
\[I = \int {\left[ {\sin x} \right]} dx\]……..\[\left( 1 \right)\]
It is given that \[x\] varies from 0 to \[\dfrac{\pi }{2}\]. We know the range of function \[\sin x\] for \[x \in \left( {0,\dfrac{\pi }{2}} \right)\] is \[\left( {0,1} \right)\].
But first we need the value or range of the function \[\left[ {\sin x} \right]\].
Since, the value of the function \[\sin x\] varies from 0 to 1, so we have to calculate the value of the greatest integer function of number less than 1 or more than zero.
We know the value of the greatest integer function of a number less than 1 or more than zero is zero. Therefore, the value of the function \[\left[ {\sin x} \right]\] is zero.
We will substitute the value of \[\left[ {\sin x} \right]\] in the equation (1), we get
\[I = \int {0.} dx\]
Integrating the term, we get
\[I = 0\]
Hence, the correct option is A.
Note:
Here we have calculated the value of the greatest integer function \[\left[ {\sin x} \right]\]. Greatest integer function is denoted by \[\left[ . \right]\]. When the intervals are in the form \[\left( {n,n + 1} \right)\], then the value of the greatest integer function is \[n\]. In the same way, we have found the value of \[\left[ {\sin x} \right]\]. The range of \[\sin x\] here is \[\left( {0,1} \right)\]. Thus, from the definition, we got the value of \[\left[ {\sin x} \right]\] is 0. We need to keep in mind that the integration of zero is equal to zero.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE