Integrate the function: \[\int {\sin x\log \left( {\cos x} \right)} dx\].
Answer
Verified
456.9k+ views
Hint:
Here, we need to find the value of the given integral. We will use a substitution method to simplify the integral. Then, we will use integration by parts to find the value of the integral.
Formula Used:
We will use the formula of integration by parts, the integral of the product of two differentiable functions of \[x\] can be written as \[\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} \], where \[u\] and \[v\] are the differentiable functions of \[x\].
Complete step by step solution:
We will use a substitution method to solve the given integral.
Rewriting the expression \[\int {\sin x\log \left( {\cos x} \right)} dx\], we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \int {\left( 1 \right)\sin x\log \left( {\cos x} \right)} dx\]
Rewriting 1 as the product of \[ - 1\] and \[ - 1\], we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \int {\left( { - 1 \times - 1} \right)\sin x\log \left( {\cos x} \right)} dx\]
We know that we can take constants outside the integral, because \[\int {af\left( x \right)} dx = a\int {f\left( x \right)} dx\].
Therefore, the equation becomes
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \left( { - 1} \right)\int {\left( { - 1} \right)\sin x\log \left( {\cos x} \right)} dx\]
Simplifying the expression, we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \int {\left( { - \sin x} \right)\log \left( {\cos x} \right)} dx\]
Now, we will use substitution to integrate the expression.
Let \[t = \cos x\].
The derivative of \[\cos x\] with respect to \[x\] is \[ - \sin x\].
Differentiating both sides of the equation \[t = \cos x\] with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dt}}{{dx}} = - \sin x\]
Multiplying both sides of the equation by , we get
\[ \Rightarrow dt = \left( { - \sin x} \right)dx\]
Substituting \[\cos x = t\] and \[\left( { - \sin x} \right)dx = dt\] in the equation \[\int {\sin x\log \left( {\cos x} \right)} dx = - \int {\left( { - \sin x} \right)\log \left( {\cos x} \right)} dx\], we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \int {\log \left( t \right)} dt\]
Thus, we have simplified the expression within the integral.
Now, we will integrate the simplified function using integration by parts.
Rewriting the equation, we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \int {1 \times \log \left( t \right)} dt\]
Using integration by parts, the integral of the product of two differentiable functions of \[x\] can be written as \[\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} \], where \[u\] and \[v\] are the differentiable functions of \[x\].
Let \[u\] be \[\log t\] and \[v\] be \[1\].
Therefore, by integrating \[\int {1 \times \log \left( t \right)} dt\] by parts, we get
\[ \Rightarrow \int {1 \times \log \left( t \right)} dt = \log t\int {\left( 1 \right)} dt - \int {\left( {\dfrac{{d\left( {\log t} \right)}}{{dt}} \times \int {\left( 1 \right)} dt} \right)} dt\]
We know that the derivative of the function \[\log x\] is \[\dfrac{1}{x}\].
Also, we know that the integral of a constant \[\int {\left( 1 \right)} dx\] is \[x\].
Therefore, we can simplify the integral as
\[ \Rightarrow \int {1 \times \log \left( t \right)} dt = \log t \times t - \int {\left( {\dfrac{1}{t} \times t} \right)} dt\]
Simplifying the expression, we get
\[ \Rightarrow \int {\log \left( t \right)} dt = t\log t - \int {\left( 1 \right)} dt\]
Integrating the expression, we get
\[ \Rightarrow \int {\log \left( t \right)} dt = t\log t - t + K\], where \[K\] is a constant of integration
Substitute \[\int {\log \left( t \right)} dt = t\log t - t + K\] in the equation \[\int {\sin x\log \left( {\cos x} \right)} dx = - \int {\log \left( t \right)} dt\], we get
\[\begin{array}{l} \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \left( {t\log t - t + K} \right)\\ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - 1\left( {t\log t - t + K} \right)\end{array}\]
Multiplying the terms using the distributive law of multiplication, we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - t\log t + t - K\]
Substituting \[t = \cos x\] in the equation, we get
\[\begin{array}{l} \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \cos x\log \left( {\cos x} \right) + \left( {\cos x} \right) - K\\ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \left( {\cos x} \right) - \cos x\log \left( {\cos x} \right) - K\\ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \cos x\left[ {1 - \log \left( {\cos x} \right)} \right] - K\end{array}\]
Substituting \[ - K = C\], we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\]
Thus, we get the value of the integral \[\int {\sin x\log \left( {\cos x} \right)} dx\] as \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\].
Note:
We can verify our answer by differentiating the equation \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\] with respect to \[x\], and checking if the derivative is \[\sin x\log \left( {\cos x} \right)\].
Rewriting the function \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\], we get
\[ \Rightarrow \cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C = \cos x - \cos x\log \left( {\cos x} \right) + C\]
Differentiating the equation with respect to \[x\], we get
\[\begin{array}{l} \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \dfrac{{d\left[ {\cos x\log \left( {\cos x} \right)} \right]}}{{dx}} + 0\\ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \dfrac{{d\left[ {\cos x\log \left( {\cos x} \right)} \right]}}{{dx}}\end{array}\]
Differentiating \[\cos x\log \left( {\cos x} \right)\] using the product rule of differentiation, we get
\[ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \left[ {\cos x\dfrac{{d\left\{ {\log \left( {\cos x} \right)} \right\}}}{{dx}} + \dfrac{{d\left\{ {\cos x} \right\}}}{{dx}}\log \left( {\cos x} \right)} \right]\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \cos x\dfrac{{d\left\{ {\log \left( {\cos x} \right)} \right\}}}{{dx}} - \dfrac{{d\left\{ {\cos x} \right\}}}{{dx}}\log \left( {\cos x} \right)\\ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \cos x\left[ {\dfrac{1}{{\cos x}} \times \left( { - \sin x} \right)} \right] - \left( { - \sin x} \right)\log \left( {\cos x} \right)\end{array}\]
Multiplying the terms and simplifying the expression, we get
\[ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x + \sin x + \sin x\log \left( {\cos x} \right)\]
Subtracting the terms, we get
\[ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = \sin x\log \left( {\cos x} \right)\]
Since the derivative of \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\] is \[\sin x\log \left( {\cos x} \right)\], we have verified that the integral of \[\sin x\log \left( {\cos x} \right)\] is \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\].
Here, we need to find the value of the given integral. We will use a substitution method to simplify the integral. Then, we will use integration by parts to find the value of the integral.
Formula Used:
We will use the formula of integration by parts, the integral of the product of two differentiable functions of \[x\] can be written as \[\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} \], where \[u\] and \[v\] are the differentiable functions of \[x\].
Complete step by step solution:
We will use a substitution method to solve the given integral.
Rewriting the expression \[\int {\sin x\log \left( {\cos x} \right)} dx\], we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \int {\left( 1 \right)\sin x\log \left( {\cos x} \right)} dx\]
Rewriting 1 as the product of \[ - 1\] and \[ - 1\], we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \int {\left( { - 1 \times - 1} \right)\sin x\log \left( {\cos x} \right)} dx\]
We know that we can take constants outside the integral, because \[\int {af\left( x \right)} dx = a\int {f\left( x \right)} dx\].
Therefore, the equation becomes
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \left( { - 1} \right)\int {\left( { - 1} \right)\sin x\log \left( {\cos x} \right)} dx\]
Simplifying the expression, we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \int {\left( { - \sin x} \right)\log \left( {\cos x} \right)} dx\]
Now, we will use substitution to integrate the expression.
Let \[t = \cos x\].
The derivative of \[\cos x\] with respect to \[x\] is \[ - \sin x\].
Differentiating both sides of the equation \[t = \cos x\] with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dt}}{{dx}} = - \sin x\]
Multiplying both sides of the equation by , we get
\[ \Rightarrow dt = \left( { - \sin x} \right)dx\]
Substituting \[\cos x = t\] and \[\left( { - \sin x} \right)dx = dt\] in the equation \[\int {\sin x\log \left( {\cos x} \right)} dx = - \int {\left( { - \sin x} \right)\log \left( {\cos x} \right)} dx\], we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \int {\log \left( t \right)} dt\]
Thus, we have simplified the expression within the integral.
Now, we will integrate the simplified function using integration by parts.
Rewriting the equation, we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \int {1 \times \log \left( t \right)} dt\]
Using integration by parts, the integral of the product of two differentiable functions of \[x\] can be written as \[\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} \], where \[u\] and \[v\] are the differentiable functions of \[x\].
Let \[u\] be \[\log t\] and \[v\] be \[1\].
Therefore, by integrating \[\int {1 \times \log \left( t \right)} dt\] by parts, we get
\[ \Rightarrow \int {1 \times \log \left( t \right)} dt = \log t\int {\left( 1 \right)} dt - \int {\left( {\dfrac{{d\left( {\log t} \right)}}{{dt}} \times \int {\left( 1 \right)} dt} \right)} dt\]
We know that the derivative of the function \[\log x\] is \[\dfrac{1}{x}\].
Also, we know that the integral of a constant \[\int {\left( 1 \right)} dx\] is \[x\].
Therefore, we can simplify the integral as
\[ \Rightarrow \int {1 \times \log \left( t \right)} dt = \log t \times t - \int {\left( {\dfrac{1}{t} \times t} \right)} dt\]
Simplifying the expression, we get
\[ \Rightarrow \int {\log \left( t \right)} dt = t\log t - \int {\left( 1 \right)} dt\]
Integrating the expression, we get
\[ \Rightarrow \int {\log \left( t \right)} dt = t\log t - t + K\], where \[K\] is a constant of integration
Substitute \[\int {\log \left( t \right)} dt = t\log t - t + K\] in the equation \[\int {\sin x\log \left( {\cos x} \right)} dx = - \int {\log \left( t \right)} dt\], we get
\[\begin{array}{l} \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \left( {t\log t - t + K} \right)\\ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - 1\left( {t\log t - t + K} \right)\end{array}\]
Multiplying the terms using the distributive law of multiplication, we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - t\log t + t - K\]
Substituting \[t = \cos x\] in the equation, we get
\[\begin{array}{l} \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \cos x\log \left( {\cos x} \right) + \left( {\cos x} \right) - K\\ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \left( {\cos x} \right) - \cos x\log \left( {\cos x} \right) - K\\ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \cos x\left[ {1 - \log \left( {\cos x} \right)} \right] - K\end{array}\]
Substituting \[ - K = C\], we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\]
Thus, we get the value of the integral \[\int {\sin x\log \left( {\cos x} \right)} dx\] as \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\].
Note:
We can verify our answer by differentiating the equation \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\] with respect to \[x\], and checking if the derivative is \[\sin x\log \left( {\cos x} \right)\].
Rewriting the function \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\], we get
\[ \Rightarrow \cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C = \cos x - \cos x\log \left( {\cos x} \right) + C\]
Differentiating the equation with respect to \[x\], we get
\[\begin{array}{l} \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \dfrac{{d\left[ {\cos x\log \left( {\cos x} \right)} \right]}}{{dx}} + 0\\ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \dfrac{{d\left[ {\cos x\log \left( {\cos x} \right)} \right]}}{{dx}}\end{array}\]
Differentiating \[\cos x\log \left( {\cos x} \right)\] using the product rule of differentiation, we get
\[ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \left[ {\cos x\dfrac{{d\left\{ {\log \left( {\cos x} \right)} \right\}}}{{dx}} + \dfrac{{d\left\{ {\cos x} \right\}}}{{dx}}\log \left( {\cos x} \right)} \right]\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \cos x\dfrac{{d\left\{ {\log \left( {\cos x} \right)} \right\}}}{{dx}} - \dfrac{{d\left\{ {\cos x} \right\}}}{{dx}}\log \left( {\cos x} \right)\\ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \cos x\left[ {\dfrac{1}{{\cos x}} \times \left( { - \sin x} \right)} \right] - \left( { - \sin x} \right)\log \left( {\cos x} \right)\end{array}\]
Multiplying the terms and simplifying the expression, we get
\[ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x + \sin x + \sin x\log \left( {\cos x} \right)\]
Subtracting the terms, we get
\[ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = \sin x\log \left( {\cos x} \right)\]
Since the derivative of \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\] is \[\sin x\log \left( {\cos x} \right)\], we have verified that the integral of \[\sin x\log \left( {\cos x} \right)\] is \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Give 10 examples of unisexual and bisexual flowers
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Draw a labelled sketch of the human eye class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE