Answer
Verified
430.5k+ views
Hint: Whenever we have this type of question, one thing we need to remember is that the greatest integer function $\left[ x \right]$ breaks at integers which are usually discontinuous. So now we need to break the given limits as $ - 1 \to 0$ and $0 \to 1$ then do the integration to arrive at the required answer.
Complete step by step answer:
Here in this type of problems, finding the integration of the greatest integer function. Greatest integer function is also known as step function or floor function. One thing we need to remember is that the greatest integer function $\left[ x \right]$ breaks at integers which are usually discontinuous. Hence we can divide the given limit $ - 1 \to 1$ into two separate limit as $ - 1 \to 0$ and $0 \to 1$. therefore we can write the given function which is \[\int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx\] as below.
\[\int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \int\limits_{ - 1}^0 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx + \int\limits_0^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx\]
Whenever we have limit $ - 1 \to 0$ the value inside the box or braces becomes $ - 1$ and in case of limit $0 \to 1$ we get the value inside the box or braces as $0$, which can be written as below.
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \int\limits_{ - 1}^0 {\left[ {x + \left[ {x + \left[ { - 1} \right]} \right]} \right]} dx + \int\limits_0^1 {\left[ {x + \left[ {x + \left[ 0 \right]} \right]} \right]} dx\]
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \int\limits_{ - 1}^0 {\left[ { - 1 + \left[ { - 1 + \left[ { - 1} \right]} \right]} \right]} dx + \int\limits_0^1 {\left[ {0 + \left[ {0 + \left[ 0 \right]} \right]} \right]} dx\]
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \int\limits_{ - 1}^0 { - 3} dx + \int\limits_0^1 0 dx\]
Now integrate the function, we get
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \left[ { - 3x} \right]_{ - 1}^0 + 0\]
Now apply the limit, and simplify the expression. We get
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = - 3(0 - ( - 1)) + 0\]
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = - 3(1) + 0 = - 3\]
Hence the integration of greatest integer function \[\int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx\] is $ - 3$. Therefore, the option C is the correct answer.
Note:
Whenever we have this type of problems, first we need to know the concept of greatest integer function, integration and simplifying the limits. And when integrating the function you should be clear with the integration concepts then only you can get the correct answer, also when simplifying the limits be careful.
Complete step by step answer:
Here in this type of problems, finding the integration of the greatest integer function. Greatest integer function is also known as step function or floor function. One thing we need to remember is that the greatest integer function $\left[ x \right]$ breaks at integers which are usually discontinuous. Hence we can divide the given limit $ - 1 \to 1$ into two separate limit as $ - 1 \to 0$ and $0 \to 1$. therefore we can write the given function which is \[\int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx\] as below.
\[\int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \int\limits_{ - 1}^0 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx + \int\limits_0^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx\]
Whenever we have limit $ - 1 \to 0$ the value inside the box or braces becomes $ - 1$ and in case of limit $0 \to 1$ we get the value inside the box or braces as $0$, which can be written as below.
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \int\limits_{ - 1}^0 {\left[ {x + \left[ {x + \left[ { - 1} \right]} \right]} \right]} dx + \int\limits_0^1 {\left[ {x + \left[ {x + \left[ 0 \right]} \right]} \right]} dx\]
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \int\limits_{ - 1}^0 {\left[ { - 1 + \left[ { - 1 + \left[ { - 1} \right]} \right]} \right]} dx + \int\limits_0^1 {\left[ {0 + \left[ {0 + \left[ 0 \right]} \right]} \right]} dx\]
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \int\limits_{ - 1}^0 { - 3} dx + \int\limits_0^1 0 dx\]
Now integrate the function, we get
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \left[ { - 3x} \right]_{ - 1}^0 + 0\]
Now apply the limit, and simplify the expression. We get
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = - 3(0 - ( - 1)) + 0\]
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = - 3(1) + 0 = - 3\]
Hence the integration of greatest integer function \[\int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx\] is $ - 3$. Therefore, the option C is the correct answer.
Note:
Whenever we have this type of problems, first we need to know the concept of greatest integer function, integration and simplifying the limits. And when integrating the function you should be clear with the integration concepts then only you can get the correct answer, also when simplifying the limits be careful.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE