Answer
Verified
378.6k+ views
Hint: The magnetic property of the material is found by the number of unpaired electrons present in it. If such kind of unpaired electrons is present then it is paramagnetic. But in their absence or paired electrons are present then we can call it diamagnetic.
Complete step by step solution:
The creation of magnetism is explained by taking the circular motion of electrons. The electrons present inside the atoms move in circular orbits around the nucleus, this is similar to a circular coil possessing current. The electron's orbital motion points to the orbital magnetic moment. Diamagnetic substances are magnetized weakly when it is positioned in an external magnetic field in a direction that is opposing the field. The type of magnetism that is exhibited by these substances is known as diamagnetism. Examples of diamagnetic substances are copper, gold, bismuth, silver, antimony, etc. The substances which get magnetized weakly when placed in an external magnetic field in the same direction as the direction of the externally applied field are said to be paramagnetic substances. Examples of paramagnetic substances are calcium, tungsten, aluminum, platinum, lithium, etc.
The electrons have a trend to spin around in their axis, thus generating a spin magnetic moment. The magnetic moment of an atom is the outcome of the vector sum of the orbital and spin magnetic moment. Depending on the magnetic properties, the magnetic substances are classified into three groups, namely diamagnetic, ferromagnetic, and paramagnetic. Here Iron, $Fe$ is not diamagnetic, it is paramagnetic. It possesses four unpaired electrons inside the 3d shell.
Note: Paramagnetic compounds contain one or more unpaired electrons and are attracted to the poles of a magnet whereas in diamagnetic all the electrons are paired. Elemental iron and iron (III) are paramagnetic for the reason of the requirement of unpaired electrons in their orbitals. When iron (III) binds with certain elements, the resulting compound is diamagnetic since the creation of a low-spin situation. If the elements attached to the Fe (II) metal are strong-field elements placed in an octahedral configuration, a low-spin kind of situation is created in the d orbitals. Every electron is paired and it leads to the complex becoming diamagnetic.
Complete step by step solution:
The creation of magnetism is explained by taking the circular motion of electrons. The electrons present inside the atoms move in circular orbits around the nucleus, this is similar to a circular coil possessing current. The electron's orbital motion points to the orbital magnetic moment. Diamagnetic substances are magnetized weakly when it is positioned in an external magnetic field in a direction that is opposing the field. The type of magnetism that is exhibited by these substances is known as diamagnetism. Examples of diamagnetic substances are copper, gold, bismuth, silver, antimony, etc. The substances which get magnetized weakly when placed in an external magnetic field in the same direction as the direction of the externally applied field are said to be paramagnetic substances. Examples of paramagnetic substances are calcium, tungsten, aluminum, platinum, lithium, etc.
The electrons have a trend to spin around in their axis, thus generating a spin magnetic moment. The magnetic moment of an atom is the outcome of the vector sum of the orbital and spin magnetic moment. Depending on the magnetic properties, the magnetic substances are classified into three groups, namely diamagnetic, ferromagnetic, and paramagnetic. Here Iron, $Fe$ is not diamagnetic, it is paramagnetic. It possesses four unpaired electrons inside the 3d shell.
Note: Paramagnetic compounds contain one or more unpaired electrons and are attracted to the poles of a magnet whereas in diamagnetic all the electrons are paired. Elemental iron and iron (III) are paramagnetic for the reason of the requirement of unpaired electrons in their orbitals. When iron (III) binds with certain elements, the resulting compound is diamagnetic since the creation of a low-spin situation. If the elements attached to the Fe (II) metal are strong-field elements placed in an octahedral configuration, a low-spin kind of situation is created in the d orbitals. Every electron is paired and it leads to the complex becoming diamagnetic.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE