It is observed that $25%$ of the new cases related to child labour reported to the police station are solved. If $6$ new cases are reported, then the probability that at least $5$ of them will be solved is?
(a) ${{\left( \dfrac{1}{6} \right)}^{6}}$
(b) $\dfrac{19}{1024}$
(c) $\dfrac{19}{2048}$
(d) $\dfrac{19}{4096}$
Answer
Verified
512.4k+ views
Hint: Using the binomial expansion theorem we need to find a probability that out of six cases at least five of them are solved.
It is given that $25%$ of the new cases of child labour are reported in the police station are solved.
So, the probability of cases being solved is,
$\begin{align}
& =\dfrac{25}{100} \\
& =\dfrac{1}{4} \\
\end{align}$
Let the probability of cases getting solved be denoted by $'P'$. So, we have
$P=\dfrac{1}{4}$
Then the probabilities of cases not getting solved will be,
$Q=\dfrac{3}{4}$
Now as it is said six new cases are reported.
Now we need to find the probability that out of six new cases at least five of them are solved or six cases are solved.
Here we will apply binomial expansion formula.
As per binomial expansion, we choose $'k'$ numbers out of $'n'$, that is in how many ways we can choose $'k'$elements from a set of $'n'$.
So, the general formula would be
\[{{(a+b)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{a}^{n-k}}{{b}^{k}}}\]
Where ‘a’ and ‘b’ are two events.
So, applying this formula in our question, we have
Probability that at least five cases are solved be,
$R\left( X\ge 5 \right)=\sum\limits_{k=5}^{6}{\left( \begin{matrix}
6 \\
k \\
\end{matrix} \right){{Q}^{6-k}}{{P}^{k}}}$
Expanding this, we get
$R\left( X\ge 5 \right)=\left( \begin{matrix}
6 \\
5 \\
\end{matrix} \right){{Q}^{6-5}}{{P}^{5}}+\left( \begin{matrix}
6 \\
6 \\
\end{matrix} \right){{Q}^{6-6}}{{P}^{6}}$
Substituting the values, we get
\[\begin{align}
& R\left( X\ge 5 \right)=\dfrac{6!}{5!(6-5)!}{{\left( \dfrac{3}{4} \right)}^{1}}{{\left( \dfrac{1}{4} \right)}^{5}}+\dfrac{6!}{6!(6-6)!}{{\left( \dfrac{3}{4} \right)}^{0}}{{\left( \dfrac{1}{4} \right)}^{6}} \\
& \Rightarrow R\left( X\ge 5 \right)=6\left( \dfrac{3}{4} \right)\left( \dfrac{1}{1024} \right)+(1)(1)\left( \dfrac{1}{4096} \right) \\
& \Rightarrow R\left( X\ge 5 \right)=\left( \dfrac{18}{4096} \right)+\left( \dfrac{1}{4096} \right) \\
& \Rightarrow R\left( X\ge 5 \right)=\left( \dfrac{19}{4096} \right) \\
\end{align}\]
So, the probability that at least 5 of the new cases are solve will be \[\left( \dfrac{19}{4096} \right)\].
Note: Student gets confused between $P=\dfrac{1}{4}$ and $Q=\dfrac{3}{4}$. In the binomial expansion if they substitute P as Q and Q as P, i.e.,
$R\left( X\ge 5 \right)=\sum\limits_{k=5}^{6}{\left( \begin{matrix}
6 \\
k \\
\end{matrix} \right){{Q}^{6-k}}{{P}^{k}}}$is written as $R\left( X\ge 5 \right)=\sum\limits_{k=5}^{6}{\left( \begin{matrix}
6 \\
k \\
\end{matrix} \right){{P}^{6-k}}{{Q}^{k}}}$, then they will get the wrong answer.
It is given that $25%$ of the new cases of child labour are reported in the police station are solved.
So, the probability of cases being solved is,
$\begin{align}
& =\dfrac{25}{100} \\
& =\dfrac{1}{4} \\
\end{align}$
Let the probability of cases getting solved be denoted by $'P'$. So, we have
$P=\dfrac{1}{4}$
Then the probabilities of cases not getting solved will be,
$Q=\dfrac{3}{4}$
Now as it is said six new cases are reported.
Now we need to find the probability that out of six new cases at least five of them are solved or six cases are solved.
Here we will apply binomial expansion formula.
As per binomial expansion, we choose $'k'$ numbers out of $'n'$, that is in how many ways we can choose $'k'$elements from a set of $'n'$.
So, the general formula would be
\[{{(a+b)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{a}^{n-k}}{{b}^{k}}}\]
Where ‘a’ and ‘b’ are two events.
So, applying this formula in our question, we have
Probability that at least five cases are solved be,
$R\left( X\ge 5 \right)=\sum\limits_{k=5}^{6}{\left( \begin{matrix}
6 \\
k \\
\end{matrix} \right){{Q}^{6-k}}{{P}^{k}}}$
Expanding this, we get
$R\left( X\ge 5 \right)=\left( \begin{matrix}
6 \\
5 \\
\end{matrix} \right){{Q}^{6-5}}{{P}^{5}}+\left( \begin{matrix}
6 \\
6 \\
\end{matrix} \right){{Q}^{6-6}}{{P}^{6}}$
Substituting the values, we get
\[\begin{align}
& R\left( X\ge 5 \right)=\dfrac{6!}{5!(6-5)!}{{\left( \dfrac{3}{4} \right)}^{1}}{{\left( \dfrac{1}{4} \right)}^{5}}+\dfrac{6!}{6!(6-6)!}{{\left( \dfrac{3}{4} \right)}^{0}}{{\left( \dfrac{1}{4} \right)}^{6}} \\
& \Rightarrow R\left( X\ge 5 \right)=6\left( \dfrac{3}{4} \right)\left( \dfrac{1}{1024} \right)+(1)(1)\left( \dfrac{1}{4096} \right) \\
& \Rightarrow R\left( X\ge 5 \right)=\left( \dfrac{18}{4096} \right)+\left( \dfrac{1}{4096} \right) \\
& \Rightarrow R\left( X\ge 5 \right)=\left( \dfrac{19}{4096} \right) \\
\end{align}\]
So, the probability that at least 5 of the new cases are solve will be \[\left( \dfrac{19}{4096} \right)\].
Note: Student gets confused between $P=\dfrac{1}{4}$ and $Q=\dfrac{3}{4}$. In the binomial expansion if they substitute P as Q and Q as P, i.e.,
$R\left( X\ge 5 \right)=\sum\limits_{k=5}^{6}{\left( \begin{matrix}
6 \\
k \\
\end{matrix} \right){{Q}^{6-k}}{{P}^{k}}}$is written as $R\left( X\ge 5 \right)=\sum\limits_{k=5}^{6}{\left( \begin{matrix}
6 \\
k \\
\end{matrix} \right){{P}^{6-k}}{{Q}^{k}}}$, then they will get the wrong answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE