Answer
Verified
459.3k+ views
Hint: An equivalence relation is the relationship on the set which is reflexive, symmetric and transitive for everything in the set. So, we check first for the reflexivity, the symmetry and the transitivity of the given set and then will decide accordingly the relation R.
Complete step-by-step answer:
Let $ A=\{1,2,3,4\} $ and R be a relation in A given by $ R=\{(1,1),\ \text{(2,2)},\,(3,3),\,\text{(4,4), (1,2), (2,1), (3,1), (1,3) }\!\!\}\!\!\text{ } $
A reflexive relation contains every ordered pair (a,a) such that $ a\in A. $ But this doesn't mean that it should not contain an ordered pair (a,b) such that $ a,b\in A. $
$ \Rightarrow $ Now, for all $ 1,\text{ 2, 3, 4 }\in \text{ A, (1,1), (2,2), (3,3), (4,4) }\in R, $ this gives the relation R is the reflexive.
Again, for Symmetric Relation – Let A be a set in which the relation R defined, then R is said to be a symmetric relation, if $ (a,b)\in R\Rightarrow (b,a)\in \text{R} $
$ \begin{align}
& (1,2)\ \in \text{R}\Rightarrow \text{(2,1)}\in \text{R} \\
& \text{and (1,3)}\in \text{R}\Rightarrow (3,1)\in \text{R} \\
\end{align} $
Therefore the given function is symmetric.
Now, for the transitive Relation – Let A be a set in which the relation R defined. R is said to be transitive, if $ (a,b)\in \text{R}\,and\text{ (b,a)}\in \text{R}\Rightarrow (a,c)\in R $
$ (2,1),(1,3)\in \text{R} $ but $ (2,3)\notin R $
Therefore, the required solution is – if $ A=\{1,2,3,4\} $ and R be a relation in A given by $ R=\{(1,1),\ \text{(2,2)},\,(3,3),\,\text{(4,4), (1,2), (2,1), (3,1), (1,3) }\!\!\}\!\!\text{ } $ then the relation R is Reflexive symmetric but not transitive.
Hence, from the given multiple choices- given options are not correct.
Note: An equivalence relation is the relationship on a set, generally denoted by $ ''\sim '' $ which is reflexive, symmetric and transitive for everything in the given set. Equivalence relations are frequently used to group together objects that are similar or the equivalent in common.
Complete step-by-step answer:
Let $ A=\{1,2,3,4\} $ and R be a relation in A given by $ R=\{(1,1),\ \text{(2,2)},\,(3,3),\,\text{(4,4), (1,2), (2,1), (3,1), (1,3) }\!\!\}\!\!\text{ } $
A reflexive relation contains every ordered pair (a,a) such that $ a\in A. $ But this doesn't mean that it should not contain an ordered pair (a,b) such that $ a,b\in A. $
$ \Rightarrow $ Now, for all $ 1,\text{ 2, 3, 4 }\in \text{ A, (1,1), (2,2), (3,3), (4,4) }\in R, $ this gives the relation R is the reflexive.
Again, for Symmetric Relation – Let A be a set in which the relation R defined, then R is said to be a symmetric relation, if $ (a,b)\in R\Rightarrow (b,a)\in \text{R} $
$ \begin{align}
& (1,2)\ \in \text{R}\Rightarrow \text{(2,1)}\in \text{R} \\
& \text{and (1,3)}\in \text{R}\Rightarrow (3,1)\in \text{R} \\
\end{align} $
Therefore the given function is symmetric.
Now, for the transitive Relation – Let A be a set in which the relation R defined. R is said to be transitive, if $ (a,b)\in \text{R}\,and\text{ (b,a)}\in \text{R}\Rightarrow (a,c)\in R $
$ (2,1),(1,3)\in \text{R} $ but $ (2,3)\notin R $
Therefore, the required solution is – if $ A=\{1,2,3,4\} $ and R be a relation in A given by $ R=\{(1,1),\ \text{(2,2)},\,(3,3),\,\text{(4,4), (1,2), (2,1), (3,1), (1,3) }\!\!\}\!\!\text{ } $ then the relation R is Reflexive symmetric but not transitive.
Hence, from the given multiple choices- given options are not correct.
Note: An equivalence relation is the relationship on a set, generally denoted by $ ''\sim '' $ which is reflexive, symmetric and transitive for everything in the given set. Equivalence relations are frequently used to group together objects that are similar or the equivalent in common.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers