
Let $ {a_1},{a_2}......... $ be positive real numbers in geometric progression. For each $ n $ , let $ {A_n},{G_n},{H_n} $ be respectively, the arithmetic mean, geometric mean & harmonic mean of $ {a_1},{a_2}.........{a_n} $ . Find the expression for the geometric mean of $ {G_1},{G_2},{G_3}........{G_n} $ in terms of $ {A_1},{A_2},{A_3}.........{A_n},{H_1},{H_2},{H_3}..........{H_n} $
Answer
464.1k+ views
Hint: From the question student should understand that this sum is an application of formulae related to Arithmetic Mean , Geometric Mean , Harmonic Mean. First step towards solving this sum is noting down the formulae for sum upto $ n $ terms . Bring it in the simplest possible form in the next step. After this the student should remove the common terms and bring the relation between these means.
Complete step-by-step answer:
In order to solve the numerical first step is to list down the formulae for Arithmetic Mean , Geometric Mean & Harmonic Mean.
$ {G_k} = {({a_1} \times {a_2} \times {a_3}.........{a_k})^{1/k}}..............(1) $
Where $ k $ is the last term of the expression.
We can simplify equation $ 1 $ as below
$ {G_k} = {({a_1}r)^{\dfrac{{k - 1}}{2}}}..............(2) $
Following is the formula for Arithmetic progression upto $ k $ terms.
$ {A_k} = \dfrac{{{a_1} + {a_2} + ......{a_k}}}{k}..........(3) $
$ {A_k} = \dfrac{{{a_1}(1 + r + .......{r^{k - 1}})}}{k}..........(4) $
$ {A_k} = \dfrac{{{a_1}({r^k} - 1)}}{{(r - 1)k}}..........(5) $
Noting down the formula for Harmonic Progression upto $ k $ terms.
$ {H_k} = \dfrac{k}{{\dfrac{1}{{{a_1}}} + \dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_3}}} + .....\dfrac{1}{{{a_k}}}}}..........(6) $
$ {H_k} = \dfrac{{{a_1}k}}{{1 + \dfrac{1}{r} + ....... + \dfrac{1}{{{r^{k - 1}}}}}}..........(7) $
$ {H_k} = \dfrac{{{a_1}k(r - 1) \times {r^{k - 1}}}}{{{r^{k - 1}}}}..........(8) $
From Equations $ 2,5,8 $ ,we get the following relation between $ {G_k},{H_k},{A_k} $
$ {G_k} = {({A_k}{H_k})^{\dfrac{1}{2}}} $
Considering there are infinite number of terms , equation will transform as follows
$ {\prod\limits_{k = 1}^n G _k} = \prod\limits_{k = 1}^n {{{({A_k}{H_k})}^{\dfrac{1}{2}}}} ................(9) $
Thus expanding RHS of equation $ 9 $ we get following relation
\[{\prod\limits_{k = 1}^n G _k} = {({A_1}{A_2}.......{A_n} \times {H_1}{H_2}........{H_n})^{\dfrac{1}{{2n}}}}\]
Thus the relation of geometric mean in terms of arithmetic mean and Harmonic mean is
\[{\prod\limits_{k = 1}^n G _k} = {({A_1}{A_2}.......{A_n} \times {H_1}{H_2}........{H_n})^{\dfrac{1}{{2n}}}}\]
So, the correct answer is “\[{\prod\limits_{k = 1}^n G _k} = {({A_1}{A_2}.......{A_n} \times {H_1}{H_2}........{H_n})^{\dfrac{1}{{2n}}}}\]
”.
Note: Though this sum looks extremely complicated and difficult to solve, it is easy if the approach is correct. Students are advised to memorize the formula for Arithmetic Mean , Geometric Mean , Harmonic mean for sum upto $ n $ terms. The sum from this chapter should be picked up last if it is of similar type. This is because if the approach is wrong for the sum , it will lead to complete waste of time. This sum is important for Students who are good with application and like to take up challenging numericals.
Complete step-by-step answer:
In order to solve the numerical first step is to list down the formulae for Arithmetic Mean , Geometric Mean & Harmonic Mean.
$ {G_k} = {({a_1} \times {a_2} \times {a_3}.........{a_k})^{1/k}}..............(1) $
Where $ k $ is the last term of the expression.
We can simplify equation $ 1 $ as below
$ {G_k} = {({a_1}r)^{\dfrac{{k - 1}}{2}}}..............(2) $
Following is the formula for Arithmetic progression upto $ k $ terms.
$ {A_k} = \dfrac{{{a_1} + {a_2} + ......{a_k}}}{k}..........(3) $
$ {A_k} = \dfrac{{{a_1}(1 + r + .......{r^{k - 1}})}}{k}..........(4) $
$ {A_k} = \dfrac{{{a_1}({r^k} - 1)}}{{(r - 1)k}}..........(5) $
Noting down the formula for Harmonic Progression upto $ k $ terms.
$ {H_k} = \dfrac{k}{{\dfrac{1}{{{a_1}}} + \dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_3}}} + .....\dfrac{1}{{{a_k}}}}}..........(6) $
$ {H_k} = \dfrac{{{a_1}k}}{{1 + \dfrac{1}{r} + ....... + \dfrac{1}{{{r^{k - 1}}}}}}..........(7) $
$ {H_k} = \dfrac{{{a_1}k(r - 1) \times {r^{k - 1}}}}{{{r^{k - 1}}}}..........(8) $
From Equations $ 2,5,8 $ ,we get the following relation between $ {G_k},{H_k},{A_k} $
$ {G_k} = {({A_k}{H_k})^{\dfrac{1}{2}}} $
Considering there are infinite number of terms , equation will transform as follows
$ {\prod\limits_{k = 1}^n G _k} = \prod\limits_{k = 1}^n {{{({A_k}{H_k})}^{\dfrac{1}{2}}}} ................(9) $
Thus expanding RHS of equation $ 9 $ we get following relation
\[{\prod\limits_{k = 1}^n G _k} = {({A_1}{A_2}.......{A_n} \times {H_1}{H_2}........{H_n})^{\dfrac{1}{{2n}}}}\]
Thus the relation of geometric mean in terms of arithmetic mean and Harmonic mean is
\[{\prod\limits_{k = 1}^n G _k} = {({A_1}{A_2}.......{A_n} \times {H_1}{H_2}........{H_n})^{\dfrac{1}{{2n}}}}\]
So, the correct answer is “\[{\prod\limits_{k = 1}^n G _k} = {({A_1}{A_2}.......{A_n} \times {H_1}{H_2}........{H_n})^{\dfrac{1}{{2n}}}}\]
”.
Note: Though this sum looks extremely complicated and difficult to solve, it is easy if the approach is correct. Students are advised to memorize the formula for Arithmetic Mean , Geometric Mean , Harmonic mean for sum upto $ n $ terms. The sum from this chapter should be picked up last if it is of similar type. This is because if the approach is wrong for the sum , it will lead to complete waste of time. This sum is important for Students who are good with application and like to take up challenging numericals.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Worlds largest producer of jute is aBangladesh bIndia class 9 social science CBSE

Distinguish between Conventional and nonconventional class 9 social science CBSE

What was the Treaty of Constantinople of 1832 class 9 social science CBSE

What is a legitimate government class 9 social science CBSE

Describe the 4 stages of the Unification of German class 9 social science CBSE

What was the main aim of the Treaty of Vienna of 1 class 9 social science CBSE
