
Let be positive real numbers in geometric progression. For each , let be respectively, the arithmetic mean, geometric mean & harmonic mean of . Find the expression for the geometric mean of in terms of
Answer
479.7k+ views
Hint: From the question student should understand that this sum is an application of formulae related to Arithmetic Mean , Geometric Mean , Harmonic Mean. First step towards solving this sum is noting down the formulae for sum upto terms . Bring it in the simplest possible form in the next step. After this the student should remove the common terms and bring the relation between these means.
Complete step-by-step answer:
In order to solve the numerical first step is to list down the formulae for Arithmetic Mean , Geometric Mean & Harmonic Mean.
Where is the last term of the expression.
We can simplify equation as below
Following is the formula for Arithmetic progression upto terms.
Noting down the formula for Harmonic Progression upto terms.
From Equations ,we get the following relation between
Considering there are infinite number of terms , equation will transform as follows
Thus expanding RHS of equation we get following relation
Thus the relation of geometric mean in terms of arithmetic mean and Harmonic mean is
So, the correct answer is “
”.
Note: Though this sum looks extremely complicated and difficult to solve, it is easy if the approach is correct. Students are advised to memorize the formula for Arithmetic Mean , Geometric Mean , Harmonic mean for sum upto terms. The sum from this chapter should be picked up last if it is of similar type. This is because if the approach is wrong for the sum , it will lead to complete waste of time. This sum is important for Students who are good with application and like to take up challenging numericals.
Complete step-by-step answer:
In order to solve the numerical first step is to list down the formulae for Arithmetic Mean , Geometric Mean & Harmonic Mean.
Where
We can simplify equation
Following is the formula for Arithmetic progression upto
Noting down the formula for Harmonic Progression upto
From Equations
Considering there are infinite number of terms , equation will transform as follows
Thus expanding RHS of equation
Thus the relation of geometric mean in terms of arithmetic mean and Harmonic mean is
So, the correct answer is “
”.
Note: Though this sum looks extremely complicated and difficult to solve, it is easy if the approach is correct. Students are advised to memorize the formula for Arithmetic Mean , Geometric Mean , Harmonic mean for sum upto
Latest Vedantu courses for you
Grade 10 | CBSE | SCHOOL | English
Vedantu 10 CBSE Pro Course - (2025-26)
School Full course for CBSE students
₹37,300 per year
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Differentiate between the Western and the Eastern class 9 social science CBSE
