Let \[A=\{9,10,11,12,13\}\] and let \[f:A\to N\] be defined by \[f\left( n \right)=\] the highest prime factor of \[n\]. Find the range of \[f\].
Answer
Verified
510k+ views
Hint: Substitute each of the values given in the domain set \[A\] in the given function. Write the prime factorization of each of the given numbers in the domain and choose the highest possible value of its prime factor. Do this for each element of the domain and the set of values which we get on applying the function to the domain is the range of the given function.
Complete step-by-step answer:
We have a set \[A=\{9,10,11,12,13\}\] and a function acting on this set \[f:A\to N\] defined by \[f\left( n \right)=\] the highest prime factor of \[n\]. We have to find the range of the given function.
We will substitute each element of the domain set \[A\] in the given function and operate the function as given. We will write prime factorization of each element of the domain and choose its largest prime factor. We will add that prime factor of the number to a new set. This new set will be the range of the function \[f\].
We will begin by considering each element of the set \[A\].
We will begin by element \[9\]. \[9\] can be written in terms of its prime factor as \[9=3\times 3\times 1\]. So, the highest prime factor of \[9\] is \[3\]. We will add \[3\] to the range of function \[f\].
We will now evaluate the value of element \[10\] on the function \[f\]. \[10\] can be written in terms of its prime factor as \[10=2\times 5\times 1\]. So, the highest prime factor of \[10\] is \[5\]. We will add \[5\] to the range of function \[f\].
We will now evaluate the value of element \[11\] on the function \[f\]. \[11\] can be written in terms of its prime factor as \[11=11\times 1\]. So, the highest prime factor of \[11\] is \[11\]. We will add \[11\] to the range of function \[f\].
We will now evaluate the value of element \[12\] on the function \[f\]. \[12\] can be written in terms of its prime factor as \[12=2\times 2\times 3\times 1\]. So, the highest prime factor of \[12\] is \[3\]. But since \[3\] is already in the range of the function, we don’t have to add it again.
We will now evaluate the value of element \[13\] on the function \[f\]. \[13\] can be written in terms of its prime factor as \[13=13\times 1\]. So, the highest prime factor of \[13\] is \[13\]. We will add \[13\] to the range of function \[f\].
Hence, the range of \[f\] is the set \[\left\{ 3,5,11,13 \right\}\].
Note: One must keep in mind that we don’t have to add the same element twice to the range of a function. Once an element is added, we shouldn’t add it again. Also, one must clearly know the difference between the terms – domain, range and codomain. Domain of a function is the set of all possible input values for the function. Co domain is the set into which all of the output of the function is constrained to fall. Range of the function is the set of all possible values attained by the function.
Complete step-by-step answer:
We have a set \[A=\{9,10,11,12,13\}\] and a function acting on this set \[f:A\to N\] defined by \[f\left( n \right)=\] the highest prime factor of \[n\]. We have to find the range of the given function.
We will substitute each element of the domain set \[A\] in the given function and operate the function as given. We will write prime factorization of each element of the domain and choose its largest prime factor. We will add that prime factor of the number to a new set. This new set will be the range of the function \[f\].
We will begin by considering each element of the set \[A\].
We will begin by element \[9\]. \[9\] can be written in terms of its prime factor as \[9=3\times 3\times 1\]. So, the highest prime factor of \[9\] is \[3\]. We will add \[3\] to the range of function \[f\].
We will now evaluate the value of element \[10\] on the function \[f\]. \[10\] can be written in terms of its prime factor as \[10=2\times 5\times 1\]. So, the highest prime factor of \[10\] is \[5\]. We will add \[5\] to the range of function \[f\].
We will now evaluate the value of element \[11\] on the function \[f\]. \[11\] can be written in terms of its prime factor as \[11=11\times 1\]. So, the highest prime factor of \[11\] is \[11\]. We will add \[11\] to the range of function \[f\].
We will now evaluate the value of element \[12\] on the function \[f\]. \[12\] can be written in terms of its prime factor as \[12=2\times 2\times 3\times 1\]. So, the highest prime factor of \[12\] is \[3\]. But since \[3\] is already in the range of the function, we don’t have to add it again.
We will now evaluate the value of element \[13\] on the function \[f\]. \[13\] can be written in terms of its prime factor as \[13=13\times 1\]. So, the highest prime factor of \[13\] is \[13\]. We will add \[13\] to the range of function \[f\].
Hence, the range of \[f\] is the set \[\left\{ 3,5,11,13 \right\}\].
Note: One must keep in mind that we don’t have to add the same element twice to the range of a function. Once an element is added, we shouldn’t add it again. Also, one must clearly know the difference between the terms – domain, range and codomain. Domain of a function is the set of all possible input values for the function. Co domain is the set into which all of the output of the function is constrained to fall. Range of the function is the set of all possible values attained by the function.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
Difference between mass and weight class 10 physics CBSE
Saptarishi is the Indian name of which Constellation class 10 social science CBSE
What are the public facilities provided by the government? Also explain each facility
Complete the sentence with the most appropriate word class 10 english CBSE
What are five examples of facts and opinions class 10 english CBSE
Which state has the longest coastline in India A Tamil class 10 social science CBSE