
Let \[i=\sqrt{-1}\], define a sequence of complex number by \[{{z}_{1}}=0,{{z}_{n+1}}=z_{n}^{2}+i\] for \[n\ge 1\]. In the complex plane, then \[{{z}_{111}}\] lies in which quadrant?
(a) 1
(b) 2
(c) 3
(d) 4
Answer
612k+ views
Hint: It is said that \[n\ge 1\], thus put, n = 1, 2, 3….. in the expression \[{{z}_{n+1}}=z_{n}^{2}+i\]. Thus find values of \[{{z}_{1}},{{z}_{2}},{{z}_{3}}.....,{{z}_{10}}\]. Now compare these values to get a sequence. Thus find \[{{z}_{111}}\] and determine the quadrant by taking its real and imaginary part.
Complete step-by-step answer:
We have been given the sequence of complex number by \[{{z}_{1}}=0\]and \[{{z}_{n+1}}=z_{n}^{2}+i\]. We need to find where \[{{z}_{111}}\] lies on the quadrant and given that \[n\ge 1\]. So, n = 1, 2, 3….
Now, \[{{z}_{1}}=0\] and \[{{z}_{n+1}}=z_{n}^{2}+i\]
When n = 1, \[{{z}_{n+1}}=z_{n}^{2}+i\] becomes
\[\begin{align}
& {{z}_{1+1}}=z_{1}^{2}+i \\
& {{z}_{2}}=0+i \\
\end{align}\]
Hence, \[{{z}_{2}}=i\]
When n = 2, \[{{z}_{2+1}}={{\left( {{z}_{2}} \right)}^{2}}+i\] {\[\because \] We know that, \[{{i}^{2}}=-1\]}
\[\begin{align}
& {{z}_{2+1}}={{\left( i \right)}^{2}}+i=-1+i \\
& \therefore {{z}_{3}}=-1+i \\
\end{align}\]
When n = 3, \[{{z}_{3+1}}={{\left( {{z}_{3}} \right)}^{2}}+i\]
\[{{z}_{4}}={{\left( -1+i \right)}^{2}}+i\]
\[{{\left( -1+i \right)}^{2}}\] is of the form, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\].
\[\begin{align}
& \therefore {{z}_{4}}={{\left( -1 \right)}^{2}}-2\times 1\times i+{{i}^{2}}+i \\
& {{z}_{4}}=1-2i+{{i}^{2}}+i \\
& {{z}_{4}}=1-1-i=-i \\
\end{align}\]
Hence, \[{{z}_{4}}=-i\]
When n = 4, \[{{z}_{4+1}}={{\left( {{z}_{4}} \right)}^{2}}+i\]
\[\begin{align}
& {{z}_{5}}={{\left( -i \right)}^{2}}+i={{1}^{2}}+i \\
& \therefore {{z}_{5}}=-1+i \\
\end{align}\]
Thus, \[{{z}_{5}}\] is equal to \[{{z}_{3}}\] i.e. \[{{z}_{5}}={{z}_{3}}=-1+i\].
When n = 5, \[{{z}_{5+1}}={{\left( {{z}_{5}} \right)}^{2}}+i\]
\[\begin{align}
& {{z}_{6}}={{\left( -1+i \right)}^{2}}+i \\
& {{z}_{6}}=-i \\
\end{align}\]
Where, \[{{z}_{6}}={{z}_{4}}=-i\].
Hence taking the summary of what we found above,
\[{{z}_{1}}=0,{{z}_{4}}=-i,{{z}_{7}}=-1+i\], when n = 6.
\[{{z}_{2}}=i,{{z}_{5}}=-1+i,{{z}_{8}}=-i\], when n = 7.
\[{{z}_{3}}=-1+i,{{z}_{6}}=-i,{{z}_{9}}=-1+i\], when n = 8.
Thus we get that, \[{{z}_{3}}={{z}_{5}}=-1+i\] and \[{{z}_{4}}={{z}_{6}}=-i\].
Hence, we get \[{{z}_{7}}={{z}_{5}}=-1+i\]. Similarly, \[{{z}_{8}}=-i\], equal to \[{{z}_{6}}\].
Thus, \[{{z}_{3}}={{z}_{5}}={{z}_{7}}={{z}_{9}}={{z}_{11}}=-1+i\].
Similarly, \[{{z}_{4}}={{z}_{6}}={{z}_{8}}={{z}_{10}}=-i\].
Thus from this we can say that the odd terms are becoming equal to \[\left( -1+i \right)\] and the even value is becoming equal to \[\left( -i \right)\]. Hence, \[{{z}_{111}}\] is an odd term, we can find its value as,
\[{{z}_{111}}=z_{110}^{2}+i={{z}_{109}}\]
Now the value of \[{{z}_{111}}\] will be equal to value of \[{{z}_{109}}\], which in turn will be equal to \[{{z}_{107}}\] and thus it will go on until \[{{z}_{3}}\].
Hence, \[{{z}_{111}}={{z}_{109}}={{z}_{107}}={{z}_{105}}={{z}_{103}}=......={{z}_{7}}={{z}_{5}}={{z}_{3}}\].
Hence we can say that, \[{{z}_{111}}=-1+i\].
Now we need to find the quadrant in which, \[{{z}_{111}}=-1+i\] lies in. Here the real part is negative and the imaginary part is positive. Hence this lies in the \[{{2}^{nd}}\] quadrant.
Complete step-by-step answer:
We have been given the sequence of complex number by \[{{z}_{1}}=0\]and \[{{z}_{n+1}}=z_{n}^{2}+i\]. We need to find where \[{{z}_{111}}\] lies on the quadrant and given that \[n\ge 1\]. So, n = 1, 2, 3….
Now, \[{{z}_{1}}=0\] and \[{{z}_{n+1}}=z_{n}^{2}+i\]
When n = 1, \[{{z}_{n+1}}=z_{n}^{2}+i\] becomes
\[\begin{align}
& {{z}_{1+1}}=z_{1}^{2}+i \\
& {{z}_{2}}=0+i \\
\end{align}\]
Hence, \[{{z}_{2}}=i\]
When n = 2, \[{{z}_{2+1}}={{\left( {{z}_{2}} \right)}^{2}}+i\] {\[\because \] We know that, \[{{i}^{2}}=-1\]}
\[\begin{align}
& {{z}_{2+1}}={{\left( i \right)}^{2}}+i=-1+i \\
& \therefore {{z}_{3}}=-1+i \\
\end{align}\]
When n = 3, \[{{z}_{3+1}}={{\left( {{z}_{3}} \right)}^{2}}+i\]
\[{{z}_{4}}={{\left( -1+i \right)}^{2}}+i\]
\[{{\left( -1+i \right)}^{2}}\] is of the form, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\].
\[\begin{align}
& \therefore {{z}_{4}}={{\left( -1 \right)}^{2}}-2\times 1\times i+{{i}^{2}}+i \\
& {{z}_{4}}=1-2i+{{i}^{2}}+i \\
& {{z}_{4}}=1-1-i=-i \\
\end{align}\]
Hence, \[{{z}_{4}}=-i\]
When n = 4, \[{{z}_{4+1}}={{\left( {{z}_{4}} \right)}^{2}}+i\]
\[\begin{align}
& {{z}_{5}}={{\left( -i \right)}^{2}}+i={{1}^{2}}+i \\
& \therefore {{z}_{5}}=-1+i \\
\end{align}\]
Thus, \[{{z}_{5}}\] is equal to \[{{z}_{3}}\] i.e. \[{{z}_{5}}={{z}_{3}}=-1+i\].
When n = 5, \[{{z}_{5+1}}={{\left( {{z}_{5}} \right)}^{2}}+i\]
\[\begin{align}
& {{z}_{6}}={{\left( -1+i \right)}^{2}}+i \\
& {{z}_{6}}=-i \\
\end{align}\]
Where, \[{{z}_{6}}={{z}_{4}}=-i\].
Hence taking the summary of what we found above,
\[{{z}_{1}}=0,{{z}_{4}}=-i,{{z}_{7}}=-1+i\], when n = 6.
\[{{z}_{2}}=i,{{z}_{5}}=-1+i,{{z}_{8}}=-i\], when n = 7.
\[{{z}_{3}}=-1+i,{{z}_{6}}=-i,{{z}_{9}}=-1+i\], when n = 8.
Thus we get that, \[{{z}_{3}}={{z}_{5}}=-1+i\] and \[{{z}_{4}}={{z}_{6}}=-i\].
Hence, we get \[{{z}_{7}}={{z}_{5}}=-1+i\]. Similarly, \[{{z}_{8}}=-i\], equal to \[{{z}_{6}}\].
Thus, \[{{z}_{3}}={{z}_{5}}={{z}_{7}}={{z}_{9}}={{z}_{11}}=-1+i\].
Similarly, \[{{z}_{4}}={{z}_{6}}={{z}_{8}}={{z}_{10}}=-i\].
Thus from this we can say that the odd terms are becoming equal to \[\left( -1+i \right)\] and the even value is becoming equal to \[\left( -i \right)\]. Hence, \[{{z}_{111}}\] is an odd term, we can find its value as,
\[{{z}_{111}}=z_{110}^{2}+i={{z}_{109}}\]
Now the value of \[{{z}_{111}}\] will be equal to value of \[{{z}_{109}}\], which in turn will be equal to \[{{z}_{107}}\] and thus it will go on until \[{{z}_{3}}\].
Hence, \[{{z}_{111}}={{z}_{109}}={{z}_{107}}={{z}_{105}}={{z}_{103}}=......={{z}_{7}}={{z}_{5}}={{z}_{3}}\].
Hence we can say that, \[{{z}_{111}}=-1+i\].
Now we need to find the quadrant in which, \[{{z}_{111}}=-1+i\] lies in. Here the real part is negative and the imaginary part is positive. Hence this lies in the \[{{2}^{nd}}\] quadrant.
Hence this lies in the \[{{2}^{nd}}\] quadrant. Hence, \[\left( -1+i \right)\] can be marked as (-1, 1) in the \[{{2}^{nd}}\] quadrant as shown in the figure.
Thus we got that \[{{z}_{111}}\] lies in \[{{2}^{nd}}\] quadrant.
\[\therefore \] Option (b) is the correct answer.
Note: The basic concept is that you substitute n = 1, 2, 3 …… in \[{{z}_{n+1}}=z_{n}^{2}+i\]. You should be careful while applying and remember, \[{{i}^{2}}=\left( -1 \right)\], which is one of the basics of complex numbers. To find the quadrant, compare the real and imaginary part. It its (1, 1) the \[{{1}^{st}}\], (-1, 1) then \[{{2}^{nd}}\], (-1, -1) in \[{{3}^{rd}}\] and (+1, -1) in \[{{4}^{th}}\] quadrant.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

