Answer
Verified
450k+ views
Hint: We solve this problem by using the simple formula for summation of determinant that is we apply the summation of determinant to inside such that it applies to all rows that are having the variable of summation that is if
\[\Delta =\left| \begin{matrix}
f\left( x \right) & g\left( x \right) & h\left( x \right) \\
p & q & r \\
a & b & c \\
\end{matrix} \right|\]
Then the summation with respect to \['x'\] is given as
\[\Rightarrow \sum\limits_{x=0}^{n}{\Delta }=\left| \begin{matrix}
\sum\limits_{x=0}^{n}{f\left( x \right)} & \sum\limits_{x=0}^{n}{g\left( x \right)} & \sum\limits_{x=0}^{n}{h\left( x \right)} \\
p & q & r \\
a & b & c \\
\end{matrix} \right|\]
By using the above formula we get the required determinant by using the summation of first \['n'\] whole numbers as
\[\sum\limits_{r=0}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}\]
\[\sum\limits_{r=0}^{n}{1}=n+1\]
Complete step-by-step answer:
We are given that
\[{{\Delta }_{r}}=\left| \begin{matrix}
2r-1 & {}^{m}{{C}_{r}} & 1 \\
{{m}^{2}}-1 & {{2}^{m}} & m+1 \\
a & b & c \\
\end{matrix} \right|\]
We are asked to find the summation of above determinant with respect to \['r'\]
We know that if
\[\Delta =\left| \begin{matrix}
f\left( x \right) & g\left( x \right) & h\left( x \right) \\
p & q & r \\
a & b & c \\
\end{matrix} \right|\]
Then the summation with respect to \['x'\] is given as
\[\Rightarrow \sum\limits_{x=0}^{n}{\Delta }=\left| \begin{matrix}
\sum\limits_{x=0}^{n}{f\left( x \right)} & \sum\limits_{x=0}^{n}{g\left( x \right)} & \sum\limits_{x=0}^{n}{h\left( x \right)} \\
p & q & r \\
a & b & c \\
\end{matrix} \right|\]
By using the above formula to given determinant we get
\[\Rightarrow \sum\limits_{r=0}^{m}{{{\Delta }_{r}}}=\left| \begin{matrix}
\sum\limits_{r=0}^{m}{\left( 2r-1 \right)} & \sum\limits_{r=0}^{m}{{}^{m}{{C}_{r}}} & \sum\limits_{r=0}^{m}{1} \\
{{m}^{2}}-1 & {{2}^{m}} & m+1 \\
a & b & c \\
\end{matrix} \right|..........equation(i)\]
Now, let us assume that the first row first element as
\[\Rightarrow {{a}_{1}}=\sum\limits_{r=0}^{m}{\left( 2r-1 \right)}\]
We know that the summation of first \['n'\] whole numbers as
\[\sum\limits_{r=0}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}\]
\[\sum\limits_{r=0}^{n}{1}=n+1\]
By using these formulas to above equation we get
\[\begin{align}
& \Rightarrow {{a}_{1}}=2\left( \dfrac{m\left( m+1 \right)}{2} \right)-\left( m+1 \right) \\
& \Rightarrow {{a}_{1}}={{m}^{2}}+m-m-1 \\
& \Rightarrow {{a}_{1}}={{m}^{2}}-1..........equation(ii) \\
\end{align}\]
Now let us assume that second element of first row as
\[\begin{align}
& \Rightarrow {{a}_{2}}=\sum\limits_{r=0}^{m}{{}^{m}{{C}_{r}}} \\
& \Rightarrow {{a}_{2}}={}^{m}{{C}_{0}}+{}^{m}{{C}_{1}}+{}^{m}{{C}_{2}}+...........+{}^{m}{{C}_{m}} \\
\end{align}\]
We know that binomial expansion as’
\[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+.........+{}^{n}{{C}_{n}}{{x}^{n}}\]
Now by substituting \[x=1\] in above equation we get
\[\Rightarrow {{2}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+.........+{}^{n}{{C}_{n}}\]
By using this result in the second element of first row we get
\[\Rightarrow {{a}_{2}}={{2}^{m}}.......equation(iii)\]
Let us assume that the third element of first row we get
\[\Rightarrow {{a}_{3}}=\sum\limits_{r=0}^{m}{1}\]
We know that the standard result to summation as
\[\sum\limits_{r=0}^{n}{1}=n+1\]
By using this result to above equation we get
\[\Rightarrow {{a}_{3}}=m+1.........equation(iv)\]
Now, by substituting the equation (ii), equation (iii) and equation (iv) in equation (i) we get
\[\Rightarrow \sum\limits_{r=0}^{m}{{{\Delta }_{r}}}=\left| \begin{matrix}
{{m}^{2}}-1 & {{2}^{m}} & m+1 \\
{{m}^{2}}-1 & {{2}^{m}} & m+1 \\
a & b & c \\
\end{matrix} \right|\]
Here, we can see that there are two equal rows.
We know that the determinant having two equal rows or columns is zero.
By using the result we get
\[\Rightarrow \sum\limits_{r=0}^{m}{{{\Delta }_{r}}}=0\]
Therefore the summation of given determinant with respect to \['r'\] is given as
\[\therefore \sum\limits_{r=0}^{m}{{{\Delta }_{r}}}=0\]
So, the correct answer is “Option A”.
Note: Students may do mistake in the summation of numbers.
Here we have the formula of the summation of first \['n'\] whole numbers as
\[\sum\limits_{r=0}^{n}{1}=n+1\]
Here, the summation stars from 0 so, we get total of \[n+1\] terms.
But students may do mistake and take the formula as
\[\sum\limits_{r=0}^{n}{1}=n\]
This gives the wrong answer.
\[\Delta =\left| \begin{matrix}
f\left( x \right) & g\left( x \right) & h\left( x \right) \\
p & q & r \\
a & b & c \\
\end{matrix} \right|\]
Then the summation with respect to \['x'\] is given as
\[\Rightarrow \sum\limits_{x=0}^{n}{\Delta }=\left| \begin{matrix}
\sum\limits_{x=0}^{n}{f\left( x \right)} & \sum\limits_{x=0}^{n}{g\left( x \right)} & \sum\limits_{x=0}^{n}{h\left( x \right)} \\
p & q & r \\
a & b & c \\
\end{matrix} \right|\]
By using the above formula we get the required determinant by using the summation of first \['n'\] whole numbers as
\[\sum\limits_{r=0}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}\]
\[\sum\limits_{r=0}^{n}{1}=n+1\]
Complete step-by-step answer:
We are given that
\[{{\Delta }_{r}}=\left| \begin{matrix}
2r-1 & {}^{m}{{C}_{r}} & 1 \\
{{m}^{2}}-1 & {{2}^{m}} & m+1 \\
a & b & c \\
\end{matrix} \right|\]
We are asked to find the summation of above determinant with respect to \['r'\]
We know that if
\[\Delta =\left| \begin{matrix}
f\left( x \right) & g\left( x \right) & h\left( x \right) \\
p & q & r \\
a & b & c \\
\end{matrix} \right|\]
Then the summation with respect to \['x'\] is given as
\[\Rightarrow \sum\limits_{x=0}^{n}{\Delta }=\left| \begin{matrix}
\sum\limits_{x=0}^{n}{f\left( x \right)} & \sum\limits_{x=0}^{n}{g\left( x \right)} & \sum\limits_{x=0}^{n}{h\left( x \right)} \\
p & q & r \\
a & b & c \\
\end{matrix} \right|\]
By using the above formula to given determinant we get
\[\Rightarrow \sum\limits_{r=0}^{m}{{{\Delta }_{r}}}=\left| \begin{matrix}
\sum\limits_{r=0}^{m}{\left( 2r-1 \right)} & \sum\limits_{r=0}^{m}{{}^{m}{{C}_{r}}} & \sum\limits_{r=0}^{m}{1} \\
{{m}^{2}}-1 & {{2}^{m}} & m+1 \\
a & b & c \\
\end{matrix} \right|..........equation(i)\]
Now, let us assume that the first row first element as
\[\Rightarrow {{a}_{1}}=\sum\limits_{r=0}^{m}{\left( 2r-1 \right)}\]
We know that the summation of first \['n'\] whole numbers as
\[\sum\limits_{r=0}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}\]
\[\sum\limits_{r=0}^{n}{1}=n+1\]
By using these formulas to above equation we get
\[\begin{align}
& \Rightarrow {{a}_{1}}=2\left( \dfrac{m\left( m+1 \right)}{2} \right)-\left( m+1 \right) \\
& \Rightarrow {{a}_{1}}={{m}^{2}}+m-m-1 \\
& \Rightarrow {{a}_{1}}={{m}^{2}}-1..........equation(ii) \\
\end{align}\]
Now let us assume that second element of first row as
\[\begin{align}
& \Rightarrow {{a}_{2}}=\sum\limits_{r=0}^{m}{{}^{m}{{C}_{r}}} \\
& \Rightarrow {{a}_{2}}={}^{m}{{C}_{0}}+{}^{m}{{C}_{1}}+{}^{m}{{C}_{2}}+...........+{}^{m}{{C}_{m}} \\
\end{align}\]
We know that binomial expansion as’
\[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+.........+{}^{n}{{C}_{n}}{{x}^{n}}\]
Now by substituting \[x=1\] in above equation we get
\[\Rightarrow {{2}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+.........+{}^{n}{{C}_{n}}\]
By using this result in the second element of first row we get
\[\Rightarrow {{a}_{2}}={{2}^{m}}.......equation(iii)\]
Let us assume that the third element of first row we get
\[\Rightarrow {{a}_{3}}=\sum\limits_{r=0}^{m}{1}\]
We know that the standard result to summation as
\[\sum\limits_{r=0}^{n}{1}=n+1\]
By using this result to above equation we get
\[\Rightarrow {{a}_{3}}=m+1.........equation(iv)\]
Now, by substituting the equation (ii), equation (iii) and equation (iv) in equation (i) we get
\[\Rightarrow \sum\limits_{r=0}^{m}{{{\Delta }_{r}}}=\left| \begin{matrix}
{{m}^{2}}-1 & {{2}^{m}} & m+1 \\
{{m}^{2}}-1 & {{2}^{m}} & m+1 \\
a & b & c \\
\end{matrix} \right|\]
Here, we can see that there are two equal rows.
We know that the determinant having two equal rows or columns is zero.
By using the result we get
\[\Rightarrow \sum\limits_{r=0}^{m}{{{\Delta }_{r}}}=0\]
Therefore the summation of given determinant with respect to \['r'\] is given as
\[\therefore \sum\limits_{r=0}^{m}{{{\Delta }_{r}}}=0\]
So, the correct answer is “Option A”.
Note: Students may do mistake in the summation of numbers.
Here we have the formula of the summation of first \['n'\] whole numbers as
\[\sum\limits_{r=0}^{n}{1}=n+1\]
Here, the summation stars from 0 so, we get total of \[n+1\] terms.
But students may do mistake and take the formula as
\[\sum\limits_{r=0}^{n}{1}=n\]
This gives the wrong answer.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers