
Let$f(x)=\dfrac{{{\sin }^{-1}}(1-\left\{ x \right\}).{{\cos }^{-1}}(1-\left\{ x \right\})}{\sqrt{2\left\{ x \right\}}.(1-\left\{ x \right\})},$then find the left hand limit and right hand limits, i.e., $\underset{x\to {{0}_{+}}}{\mathop{\lim }}\,f(x)\text{ and }\underset{x\to {{0}_{-}}}{\mathop{\lim }}\,f(x).\text{ }$
(Where$\left\{ x \right\}$ denotes the fractional part of x)
Answer
623.1k+ views
Hint: Find out right hand and left hand limit separately, using the product rule of limit. Convert Fractional part function to Greatest integer function and solve by substituting \[x\] as \[\left( 0+h \right)\] or \[\left( 0-h \right)\].
As per the question we have to find two limits here, i.e., the left hand limit and right hand limits, i.e.,
$\underset{x\to {{0}_{+}}}{\mathop{\lim }}\,f(x)\text{ and }\underset{x\to {{0}_{-}}}{\mathop{\lim }}\,f(x).\text{ }$
Consider the given expression,
$\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-\left\{ x \right\}).{{\cos }^{-1}}(1-\left\{ x \right\})}{\sqrt{2\left\{ x \right\}}.(1-\left\{ x \right\})}$
Here $\left\{ x \right\}$ denotes the fractional part of x.
We know fractional parts will always be non-negative and fractional parts are greater than or equal to $'0'$ and less than $'1'$ .
As we all know that,
\[x=[x]+\{x\}\]
\[\therefore \{x\}=x-[x]\]
Therefore the given expression can be written as,
\[\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-(x-[x])).{{\cos }^{-1}}(1-(x-[x]))}{\sqrt{2(x-[x])}.(1-(x-[x]))}...........(i)\]
Now we will find the right hand limit of the given function.
As we have to find the limits of positive side we should substitute $'x'$ as (\[0+h\])
And as \[x\to {{0}^{+}},h\to 0\], so the above equation (i) can be written as,
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-(0+h-[0+h])).{{\cos }^{-1}}(1-(0+h-[0+h]))}{\sqrt{2(0+h-[0+h])}.(1-(0+h-[0+h]))}\]
As \[h\] is approaching to zero, therefore it can be considered as fraction, \[\left[ 0+h \right]=0\] as the value of greatest integer function is an integer with neglecting the fraction, considering these the above equation can be written as,
\[\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-(h-0)).{{\cos }^{-1}}(1-(h-0))}{\sqrt{2(h-0)}.(1-(h-0))} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-h).{{\cos }^{-1}}(1-h)}{\sqrt{2h}.(1-h)} \\
\end{align}\]
Now we know the limit of a product is the product of the limits. So, the limit of product of two functions is equal to the product of individual limits of the functions, that is, the above function can be written as,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-h)}{(1-h)}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}}$
Now applying the limits to sine function, we get
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{{{\sin }^{-1}}(1)}{(1)}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}}$
Now we know ${{\sin }^{-1}}(1)=\dfrac{\pi }{2}$, so the above equation becomes,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}}........(i)$
Now if we apply the limits, we see that
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\dfrac{{{\cos }^{-1}}(1-0)}{\sqrt{2(0)}}=\dfrac{0}{0}$
This is indeterminate form, so we will apply L’ HOSPITAL RULE i.e., differentiating numerator and denominator. So, differentiating numerator and denominator of equation (i) with respect to $h$ , we get
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dh}\left( {{\cos }^{-1}}(1-h) \right)}{\dfrac{d}{dh}\left( \sqrt{2h} \right)}$
The differentiation of ${{\cos }^{-1}}x$ is $-\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ , applying this formula, the above equation becomes,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{\sqrt{1-{{(1-h)}^{2}}}}\dfrac{d}{dh}(1-h)}{\sqrt{2}\times \dfrac{1}{2\sqrt{h}}}$
Solving this, we get
\[\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{\sqrt{1-{{(1-h)}^{2}}}}(-1)}{\dfrac{1}{\sqrt{2h}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{1}{\sqrt{1-{{(1-h)}^{2}}}}\times \sqrt{2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{1}{\sqrt{1-(1+{{h}^{2}}-2h)}}\times \sqrt{2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{1}{\sqrt{1-1-{{h}^{2}}+2h}}\times \sqrt{2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \sqrt{\dfrac{2h}{2h-{{h}^{2}}}} \right] \\
\end{align}\]
Taking out the common term, we get
\[\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \sqrt{\dfrac{2h}{2h(1-h)}} \right]\]
Cancelling the like term, we get
\[\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \sqrt{\dfrac{1}{1(1-h)}} \right]\]
Applying the limit, we get
\[\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\left[ \sqrt{\dfrac{1}{1(1-0)}} \right]=\dfrac{\pi }{2}\]
So the right hand limit is $\dfrac{\pi }{2}$ .
Now we will find the left hand limit of the given function.
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-\left\{ x \right\}).{{\cos }^{-1}}(1-\left\{ x \right\})}{\sqrt{2\left\{ x \right\}}.(1-\left\{ x \right\})}$
Now we know the limit of a product is the product of the limits. So, the limit of product of two functions is equal to the product of individual limits of the functions, that is, the above function can be written as,
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-\left\{ x \right\})}{(1-\left\{ x \right\})}.\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-\left\{ x \right\})}{\sqrt{2\left\{ x \right\}}}$
Now as $x$ is tending to zero, i.e., $x$ is less than zero, so we will substitute$\left\{ x \right\}=-h$, so as $x\to 0$, therefore $h\to 0$, so the above equation can be written as,
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1+h)}{(1+h)}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1+h)}{\sqrt{2(-h)}}$
Now we know ${{\sin }^{-1}}(1)=\dfrac{\pi }{2}$, so the above equation becomes,
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1+h)}{\sqrt{2(-h)}}........(ii)\]
Now if we apply the limits, we see that
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{{{\cos }^{-1}}(1+0)}{\sqrt{2(-0)}}=\dfrac{0}{0}$
This is indeterminate form, so we will apply L’ HOSPITAL RULE i.e., differentiating numerator and denominator. So, differentiating numerator and denominator of equation (ii) with respect to $h$ , we get
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dh}\left( {{\cos }^{-1}}(1+h) \right)}{\dfrac{d}{dh}\left( \sqrt{2(-h)} \right)}\]
The differentiation of ${{\cos }^{-1}}x$ is $-\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ , applying this formula, the above equation becomes,
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{\sqrt{1-{{(1+h)}^{2}}}}\dfrac{d}{dh}(1+h)}{\sqrt{-2}\times \dfrac{(1)}{2\sqrt{h}}}$
Solving this, we get
\[\begin{align}
& \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{\sqrt{1-{{(1+h)}^{2}}}}(1)}{\dfrac{(1)}{\sqrt{-2h}}} \\
& \Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\dfrac{1}{\sqrt{1-{{(1+h)}^{2}}}}\times \sqrt{-2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\dfrac{1}{\sqrt{1-(1+{{h}^{2}}+2h)}}\times \sqrt{-2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\dfrac{1}{\sqrt{1-1-{{h}^{2}}-2h}}\times \sqrt{-2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \sqrt{\dfrac{-2h}{-2h-{{h}^{2}}}} \right] \\
\end{align}\]
Taking out the common term, we get
\[\Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\sqrt{\dfrac{-2h}{-2h(1+h)}} \right]\]
Cancelling the like term, we get
\[\Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\sqrt{\dfrac{1}{1(1+h)}} \right]\]
Applying the limit, we get
\[\Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\left[ -\sqrt{\dfrac{1}{1(1-0)}} \right]=-\dfrac{\pi }{2}\]
So the left hand limit is $-\dfrac{\pi }{2}$ .
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}\text{ and }\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=-\dfrac{\pi }{2}$
Note: The common mistake is substituting $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}x}{x}=1$, so we get
$\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-h)}{(1-h)}.\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}} \\
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=(1).\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}} \\
\end{align}$
In this case we will get a completely different answer.
As per the question we have to find two limits here, i.e., the left hand limit and right hand limits, i.e.,
$\underset{x\to {{0}_{+}}}{\mathop{\lim }}\,f(x)\text{ and }\underset{x\to {{0}_{-}}}{\mathop{\lim }}\,f(x).\text{ }$
Consider the given expression,
$\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-\left\{ x \right\}).{{\cos }^{-1}}(1-\left\{ x \right\})}{\sqrt{2\left\{ x \right\}}.(1-\left\{ x \right\})}$
Here $\left\{ x \right\}$ denotes the fractional part of x.
We know fractional parts will always be non-negative and fractional parts are greater than or equal to $'0'$ and less than $'1'$ .
As we all know that,
\[x=[x]+\{x\}\]
\[\therefore \{x\}=x-[x]\]
Therefore the given expression can be written as,
\[\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-(x-[x])).{{\cos }^{-1}}(1-(x-[x]))}{\sqrt{2(x-[x])}.(1-(x-[x]))}...........(i)\]
Now we will find the right hand limit of the given function.
As we have to find the limits of positive side we should substitute $'x'$ as (\[0+h\])
And as \[x\to {{0}^{+}},h\to 0\], so the above equation (i) can be written as,
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-(0+h-[0+h])).{{\cos }^{-1}}(1-(0+h-[0+h]))}{\sqrt{2(0+h-[0+h])}.(1-(0+h-[0+h]))}\]
As \[h\] is approaching to zero, therefore it can be considered as fraction, \[\left[ 0+h \right]=0\] as the value of greatest integer function is an integer with neglecting the fraction, considering these the above equation can be written as,
\[\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-(h-0)).{{\cos }^{-1}}(1-(h-0))}{\sqrt{2(h-0)}.(1-(h-0))} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-h).{{\cos }^{-1}}(1-h)}{\sqrt{2h}.(1-h)} \\
\end{align}\]
Now we know the limit of a product is the product of the limits. So, the limit of product of two functions is equal to the product of individual limits of the functions, that is, the above function can be written as,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-h)}{(1-h)}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}}$
Now applying the limits to sine function, we get
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{{{\sin }^{-1}}(1)}{(1)}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}}$
Now we know ${{\sin }^{-1}}(1)=\dfrac{\pi }{2}$, so the above equation becomes,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}}........(i)$
Now if we apply the limits, we see that
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\dfrac{{{\cos }^{-1}}(1-0)}{\sqrt{2(0)}}=\dfrac{0}{0}$
This is indeterminate form, so we will apply L’ HOSPITAL RULE i.e., differentiating numerator and denominator. So, differentiating numerator and denominator of equation (i) with respect to $h$ , we get
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dh}\left( {{\cos }^{-1}}(1-h) \right)}{\dfrac{d}{dh}\left( \sqrt{2h} \right)}$
The differentiation of ${{\cos }^{-1}}x$ is $-\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ , applying this formula, the above equation becomes,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{\sqrt{1-{{(1-h)}^{2}}}}\dfrac{d}{dh}(1-h)}{\sqrt{2}\times \dfrac{1}{2\sqrt{h}}}$
Solving this, we get
\[\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{\sqrt{1-{{(1-h)}^{2}}}}(-1)}{\dfrac{1}{\sqrt{2h}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{1}{\sqrt{1-{{(1-h)}^{2}}}}\times \sqrt{2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{1}{\sqrt{1-(1+{{h}^{2}}-2h)}}\times \sqrt{2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{1}{\sqrt{1-1-{{h}^{2}}+2h}}\times \sqrt{2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \sqrt{\dfrac{2h}{2h-{{h}^{2}}}} \right] \\
\end{align}\]
Taking out the common term, we get
\[\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \sqrt{\dfrac{2h}{2h(1-h)}} \right]\]
Cancelling the like term, we get
\[\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \sqrt{\dfrac{1}{1(1-h)}} \right]\]
Applying the limit, we get
\[\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\left[ \sqrt{\dfrac{1}{1(1-0)}} \right]=\dfrac{\pi }{2}\]
So the right hand limit is $\dfrac{\pi }{2}$ .
Now we will find the left hand limit of the given function.
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-\left\{ x \right\}).{{\cos }^{-1}}(1-\left\{ x \right\})}{\sqrt{2\left\{ x \right\}}.(1-\left\{ x \right\})}$
Now we know the limit of a product is the product of the limits. So, the limit of product of two functions is equal to the product of individual limits of the functions, that is, the above function can be written as,
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-\left\{ x \right\})}{(1-\left\{ x \right\})}.\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-\left\{ x \right\})}{\sqrt{2\left\{ x \right\}}}$
Now as $x$ is tending to zero, i.e., $x$ is less than zero, so we will substitute$\left\{ x \right\}=-h$, so as $x\to 0$, therefore $h\to 0$, so the above equation can be written as,
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1+h)}{(1+h)}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1+h)}{\sqrt{2(-h)}}$
Now we know ${{\sin }^{-1}}(1)=\dfrac{\pi }{2}$, so the above equation becomes,
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1+h)}{\sqrt{2(-h)}}........(ii)\]
Now if we apply the limits, we see that
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{{{\cos }^{-1}}(1+0)}{\sqrt{2(-0)}}=\dfrac{0}{0}$
This is indeterminate form, so we will apply L’ HOSPITAL RULE i.e., differentiating numerator and denominator. So, differentiating numerator and denominator of equation (ii) with respect to $h$ , we get
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dh}\left( {{\cos }^{-1}}(1+h) \right)}{\dfrac{d}{dh}\left( \sqrt{2(-h)} \right)}\]
The differentiation of ${{\cos }^{-1}}x$ is $-\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ , applying this formula, the above equation becomes,
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{\sqrt{1-{{(1+h)}^{2}}}}\dfrac{d}{dh}(1+h)}{\sqrt{-2}\times \dfrac{(1)}{2\sqrt{h}}}$
Solving this, we get
\[\begin{align}
& \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{\sqrt{1-{{(1+h)}^{2}}}}(1)}{\dfrac{(1)}{\sqrt{-2h}}} \\
& \Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\dfrac{1}{\sqrt{1-{{(1+h)}^{2}}}}\times \sqrt{-2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\dfrac{1}{\sqrt{1-(1+{{h}^{2}}+2h)}}\times \sqrt{-2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\dfrac{1}{\sqrt{1-1-{{h}^{2}}-2h}}\times \sqrt{-2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \sqrt{\dfrac{-2h}{-2h-{{h}^{2}}}} \right] \\
\end{align}\]
Taking out the common term, we get
\[\Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\sqrt{\dfrac{-2h}{-2h(1+h)}} \right]\]
Cancelling the like term, we get
\[\Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\sqrt{\dfrac{1}{1(1+h)}} \right]\]
Applying the limit, we get
\[\Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\left[ -\sqrt{\dfrac{1}{1(1-0)}} \right]=-\dfrac{\pi }{2}\]
So the left hand limit is $-\dfrac{\pi }{2}$ .
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}\text{ and }\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=-\dfrac{\pi }{2}$
Note: The common mistake is substituting $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}x}{x}=1$, so we get
$\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-h)}{(1-h)}.\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}} \\
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=(1).\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}} \\
\end{align}$
In this case we will get a completely different answer.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

