Answer
Verified
406.2k+ views
Hint: Infinite number of lines can pass through a single point. Similarly, an infinite number of curves can pass through 2 points, which are not straight lines. Only 1 straight line can pass through 2 points.
Complete step-by-step answer:
Only through Point A \[\to \] Infinite lines.
Complete step-by-step answer:
Let us consider the 2 points as A and B.
Now, infinite lines can pass through the point A as shown below.
Similarly, infinite lines can pass through point B.
Now, Let's take two points A and B together will have one line passing through it.
Only through Point A \[\to \] Infinite lines.
Only through Point B \[\to \] Infinite lines.
Through A and B \[\to \] 1
Number of straight lines that can pass through 2 points A and B = 1.
Through A and B \[\to \] 1
Number of straight lines that can pass through 2 points A and B = 1.
Note:
Let us consider a case of non-collinear points. If we have been given 4 points and need to find how many lines can pass through these points.
The method is to find the number of straight lines that can be formed.
3 Lines 5 Lines 6 Lines
\[\therefore \](4 - 1) (4 - 1) + (4 - 2) (4 - 1) + (4 - 2) + (4 - 3) + (4 - 4)
\[\therefore \]They are of the form:
\[\begin{align}
& h=\sum\limits_{i=1}^{n}{\left( n-i \right)}=\left( n-1 \right)+\left( n-2 \right)+\left( n-3 \right)+.....+\left( n-n \right) \\
& =\sum\limits_{i=1}^{n}{n}-\sum\limits_{i=1}^{n}{i}\Rightarrow L={{n}^{2}}-\dfrac{n\left( n+1 \right)}{2}=\dfrac{2{{n}^{2}}-{{n}^{2}}-n}{2} \\
& L=\dfrac{{{n}^{2}}-n}{2}=\dfrac{n\left( n-1 \right)}{2} \\
\end{align}\]
\[\therefore L=\dfrac{n\left( n-1 \right)}{2}\], where L = number of lines.
So, for 4 points, n=4,
\[L=\dfrac{4\left( 4-1 \right)}{2}=\dfrac{4\times 3}{2}=6\]lines.
Where n=1, \[L=\dfrac{1\left( 1-1 \right)}{2}=\dfrac{0}{2}\]i.e. Infinite number of lines.
Where n=2, \[L=\dfrac{2\left( 2-1 \right)}{2}=1\]etc.
Let us consider a case of non-collinear points. If we have been given 4 points and need to find how many lines can pass through these points.
The method is to find the number of straight lines that can be formed.
3 Lines 5 Lines 6 Lines
\[\therefore \](4 - 1) (4 - 1) + (4 - 2) (4 - 1) + (4 - 2) + (4 - 3) + (4 - 4)
\[\therefore \]They are of the form:
\[\begin{align}
& h=\sum\limits_{i=1}^{n}{\left( n-i \right)}=\left( n-1 \right)+\left( n-2 \right)+\left( n-3 \right)+.....+\left( n-n \right) \\
& =\sum\limits_{i=1}^{n}{n}-\sum\limits_{i=1}^{n}{i}\Rightarrow L={{n}^{2}}-\dfrac{n\left( n+1 \right)}{2}=\dfrac{2{{n}^{2}}-{{n}^{2}}-n}{2} \\
& L=\dfrac{{{n}^{2}}-n}{2}=\dfrac{n\left( n-1 \right)}{2} \\
\end{align}\]
\[\therefore L=\dfrac{n\left( n-1 \right)}{2}\], where L = number of lines.
So, for 4 points, n=4,
\[L=\dfrac{4\left( 4-1 \right)}{2}=\dfrac{4\times 3}{2}=6\]lines.
Where n=1, \[L=\dfrac{1\left( 1-1 \right)}{2}=\dfrac{0}{2}\]i.e. Infinite number of lines.
Where n=2, \[L=\dfrac{2\left( 2-1 \right)}{2}=1\]etc.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE