Answer
Verified
378k+ views
Hint: Here we have to find whether the given graph is exponentially increasing or decreasing or is it a decreasing graph. So we will use the help of derivatives. Firstly we will find the derivative of the function given with respect to $x$ and then we will check whether the value of derivative is increasing or decreasing for all value of $x \in R$
Complete step-by-step solution:
The exponential function is given as below:
$y = 4\left( {1 - {e^{ - 2x}}} \right)$
The graph of the function can be drawn as follows:
So for finding whether the graph is increasing or decreasing we will firstly find the derivative of the function with respect to $x$ as follows:
\[\dfrac{{dy}}{{dx}} = 4\left( {\dfrac{{d\left( 1 \right)}}{{dx}} - \dfrac{{d\left( {{e^{ - 2x}}} \right)}}{{dx}}} \right)\]
We know that differentiation of a constant term is $0$ and differentiation of an exponential term is calculated as follows:
$\dfrac{{d\left( {{e^{ax}}} \right)}}{{dx}} = a{e^{ax}}$
Where $a \in R$
So we get,
$\dfrac{{dy}}{{dx}} = 4\left( {0 - \left( { - 2} \right){e^{ - 2x}}} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = 8{e^{ - 2x}}$
So as we can see that for any $x \in R$
$\dfrac{{dy}}{{dx}} = 8{e^{ - 2x}} > 0$
So the function is exponentially increasing.
Hence option (A) is correct.
Note: The general form exponential function is $f\left( x \right) = {b^x}$ where $x$ is the exponent and $b$ is any positive number greater than $1$ or we can say that exponential functions are those functions which are in the form of $f\left( x \right) = {e^x}$ where $e$ is a Euler’s number and its value lies between $2\& 3$ and $x$ is the independent variable. The exponential function $f\left( x \right) = {e^x}$ is also known as a natural exponential function. The exponential function can either describe a growth or decay depending upon the independent variable and the graph of the function. In exponential growth the graph increases very slowly at first and then rapidly. In exponential decay the graph decreases rapidly at first and then slowly.
Complete step-by-step solution:
The exponential function is given as below:
$y = 4\left( {1 - {e^{ - 2x}}} \right)$
The graph of the function can be drawn as follows:
So for finding whether the graph is increasing or decreasing we will firstly find the derivative of the function with respect to $x$ as follows:
\[\dfrac{{dy}}{{dx}} = 4\left( {\dfrac{{d\left( 1 \right)}}{{dx}} - \dfrac{{d\left( {{e^{ - 2x}}} \right)}}{{dx}}} \right)\]
We know that differentiation of a constant term is $0$ and differentiation of an exponential term is calculated as follows:
$\dfrac{{d\left( {{e^{ax}}} \right)}}{{dx}} = a{e^{ax}}$
Where $a \in R$
So we get,
$\dfrac{{dy}}{{dx}} = 4\left( {0 - \left( { - 2} \right){e^{ - 2x}}} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = 8{e^{ - 2x}}$
So as we can see that for any $x \in R$
$\dfrac{{dy}}{{dx}} = 8{e^{ - 2x}} > 0$
So the function is exponentially increasing.
Hence option (A) is correct.
Note: The general form exponential function is $f\left( x \right) = {b^x}$ where $x$ is the exponent and $b$ is any positive number greater than $1$ or we can say that exponential functions are those functions which are in the form of $f\left( x \right) = {e^x}$ where $e$ is a Euler’s number and its value lies between $2\& 3$ and $x$ is the independent variable. The exponential function $f\left( x \right) = {e^x}$ is also known as a natural exponential function. The exponential function can either describe a growth or decay depending upon the independent variable and the graph of the function. In exponential growth the graph increases very slowly at first and then rapidly. In exponential decay the graph decreases rapidly at first and then slowly.
Recently Updated Pages
The radius of curvature of a plane mirror is a positive class 10 physics CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Select the antonym for the following word from the class 10 english CBSE
Select the synonym for the given word Transparency class 10 english CBSE
Select the given word which means the opposite of the class 10 english CBSE
The purest form of carbon is a Graphite b Diamond c class 10 chemistry CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
What is the meaning of sol in chemistry class 11 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
The capital of British India was transferred from Calcutta class 10 social science CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Capital of the Cheras was A Madurai B Muziri C Uraiyur class 10 social science CBSE
What organs are located on the left side of your body class 11 biology CBSE