
Nitrobenzene reacts with $B{{r}_{2}}$ in the presence of $FeB{{r}_{3}}$ to give m-bromonitrobenzene as major project. Which of the following provides the best reason for the formation of m-bromonitrobenzene as the major project?
(A) The electrons density at the meta position is greater than those at the ortho and para positions.
(B) Aromaticity is lost in the $\sigma $-complexes formed by the attack of $B{{r}^{+}}$ at the ortho and para positions but not at the meta position.
(C) The $\sigma $-complex formed by the attack of $B{{r}^{+}}$ at the meta position is the least destabilized and the most stable among the three $\sigma $-complexes.
(D) In the final step of regeneration of benzene ring by the loss of ${{H}^{+}}$ from the $\sigma $-complexes, the meta-oriented $\sigma $-complex loses ${{H}^{+}}$ most readily.
Answer
518.7k+ views
Hint: We first need to know what are ortho, para, and meta positions. When a group is substituted in a monosubstituted arene, it can occupy three positions as follows
The positions of the substituted group relative to the position of the pre-existing substituted group are ortho, para, and meta positions.
Complete answer:
When a benzene ring that has one substituted group is treated with an electrophile, the electrophilic aromatic substitution could undergo in three ways giving three products in which the substituted electrophile is at ortho position, para position, and meta position.
When the products obtained of meta position is more than the product obtained of ortho and para positions, the substituent group is said to be meta directing and vice versa.
The substituent group which withdraws electrons are meta directing whereas the groups that donate electrons are ortho-para directing.
Now, the bromination of nitrobenzene in the presence of $FeB{{r}_{3}}$ to produce m-bromonitrobenzene as a major product is depicted as follows
The resonating structure of nitrobenzene is as follows
From the resonance structures of nitrobenzene, we can see that there is electron deficiency at ortho and para positions. Since bromine is an electron-withdrawing group, the most stable resonance intermediates are formed when it is bonded at the meta position.
Hence the bromination of benzene results in a major m-bromonitrobenzene because of option (C).
Note:
It should be noted that the carbocation formed upon the attack of the substitution group determines the stability of the product formed. The more stable the intermediate carbocation, the more stable the product.
The positions of the substituted group relative to the position of the pre-existing substituted group are ortho, para, and meta positions.
Complete answer:
When a benzene ring that has one substituted group is treated with an electrophile, the electrophilic aromatic substitution could undergo in three ways giving three products in which the substituted electrophile is at ortho position, para position, and meta position.
When the products obtained of meta position is more than the product obtained of ortho and para positions, the substituent group is said to be meta directing and vice versa.
The substituent group which withdraws electrons are meta directing whereas the groups that donate electrons are ortho-para directing.
Now, the bromination of nitrobenzene in the presence of $FeB{{r}_{3}}$ to produce m-bromonitrobenzene as a major product is depicted as follows
The resonating structure of nitrobenzene is as follows
From the resonance structures of nitrobenzene, we can see that there is electron deficiency at ortho and para positions. Since bromine is an electron-withdrawing group, the most stable resonance intermediates are formed when it is bonded at the meta position.
Hence the bromination of benzene results in a major m-bromonitrobenzene because of option (C).
Note:
It should be noted that the carbocation formed upon the attack of the substitution group determines the stability of the product formed. The more stable the intermediate carbocation, the more stable the product.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

