Answer
Verified
468.9k+ views
Hint: This is a particular problem of trigonometry where we have to all the value of \[x \in [0,2\pi ]\]
So we first solve modulus function so if $|x| = a$ then it become $x = \pm a$ and we use some trigonometric relation
$1.{\cos ^2}x - {\sin ^2}x = \cos 2x$
$2.{\sin ^2}x + {\cos ^2}x = 1$ and we rearrange the whole equation by squaring both sides and after that we use these formulas to find our answer.
Complete step-by-step answer:
Step 1. Solve modulus function first
$\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} - \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} = \pm 1$
Now doing rearrangements we get
$\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} = \pm 1 + \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
Now by taking square both side we get
${(\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} )^2} = {( \pm 1 + \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} )^2}$
Now ${(a \pm b)^2} = {a^2} + {b^2} \pm 2ab$
By using this we can write
$2{\sin ^4}x + 18{\cos ^2}x = 1 + 2{\cos ^4}x + 18{\sin ^2}x \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
Now rearranging this equation
$2{\sin ^4}x - 2{\cos ^4}x + 18{\cos ^2}x - 18{\sin ^2}x = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
Now use some formula
${a^2} - {b^2} = (a - b)(a + b)$ and ${\cos ^2}x - {\sin ^2}x = \cos 2x$
From this we get
$2({\sin ^2}x - {\cos ^2}x)({\sin ^2}x + {\cos ^2}x) + 18({\cos ^2}x - {\sin ^2}x) = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
As we know ${\sin ^2}x + {\cos ^2}x = 1$
Now $ - 2\cos 2x + 18\cos 2x = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
From this we can write
$16\cos 2x = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
Now we use $2{\cos ^2}x = 1 + \cos 2x$ and $2{\sin ^2}x = 1 - \cos 2x$
$16\cos 2x = 1 \pm 2\sqrt {\dfrac{1}{2}{{(\cos 2x + 1)}^2} + 9(1 - \cos 2x)} $
Now again we do rearrangements of terms
$16\cos 2x - 1 = \pm 2\sqrt {\dfrac{1}{2}{{(\cos 2x + 1)}^2} + 9(1 - \cos 2x)} $
Now take square both side
${(16\cos 2x - 1)^2} = 4\{ \dfrac{1}{2}({\cos ^2}2x + 1 + 2\cos 2x) + 9 - 9\cos 2x\} $
Now open square and multiply 4 inside the curly braces
$256{\cos ^2}2x + 1 - 32\cos 2x = 2{\cos ^2}2x + 2 + 4\cos 2x + 36 - 36\cos 2x$
Now after rearranging we get
$254{\cos ^2}2x = 37$
We can write this as
$\cos 2x = \pm \sqrt {\dfrac{{37}}{{254}}} $
Now
$2x = {\cos ^{ - 1}}( \pm \sqrt {\dfrac{{37}}{{254}}} )$
$x = \dfrac{1}{2} \times {\cos ^{ - 1}}( \pm \sqrt {\dfrac{{37}}{{254}}} )$ And
Now as question said $x \in [0,2\pi ]$
In this interval $\cos x$ take two time negative value and two time positive value
When $x \in \left[ {0,\dfrac{\pi }{2}} \right]$ , $\cos x$ take positive value so here $x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{37}}{{254}}} } \right)$
When $x \in \left[ {\dfrac{\pi }{2},\pi } \right]$, $\cos x$ take negative value so here $x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( { - \sqrt {\dfrac{{37}}{{254}}} } \right)$
And also when $x \in \left[ {\pi ,\dfrac{{2\pi }}{3}} \right]$, $\cos x$ take positive value so here $x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{37}}{{254}}} } \right)$
And also when $x \in \left[ {\dfrac{{2\pi }}{3},2\pi } \right]$, $\cos x$ take negative value so here $x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( { - \sqrt {\dfrac{{37}}{{254}}} } \right)$
From this we can say total 4 solution we have in $x \in \left[ {0,2\pi } \right]$
So our answer is 4.
Option A is the correct answer.
Note: We have to remember that $\cos \theta $ taking positive value in first and fourth coordinate and negative value in second and third coordinate.
First Quadrant- All are positive Second Quadrant- Sin and Cosec are positive Third Quadrant- Tan and Cot are positive Fourth Quadrant- Cos and Sec are positive.
So we first solve modulus function so if $|x| = a$ then it become $x = \pm a$ and we use some trigonometric relation
$1.{\cos ^2}x - {\sin ^2}x = \cos 2x$
$2.{\sin ^2}x + {\cos ^2}x = 1$ and we rearrange the whole equation by squaring both sides and after that we use these formulas to find our answer.
Complete step-by-step answer:
Step 1. Solve modulus function first
$\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} - \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} = \pm 1$
Now doing rearrangements we get
$\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} = \pm 1 + \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
Now by taking square both side we get
${(\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} )^2} = {( \pm 1 + \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} )^2}$
Now ${(a \pm b)^2} = {a^2} + {b^2} \pm 2ab$
By using this we can write
$2{\sin ^4}x + 18{\cos ^2}x = 1 + 2{\cos ^4}x + 18{\sin ^2}x \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
Now rearranging this equation
$2{\sin ^4}x - 2{\cos ^4}x + 18{\cos ^2}x - 18{\sin ^2}x = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
Now use some formula
${a^2} - {b^2} = (a - b)(a + b)$ and ${\cos ^2}x - {\sin ^2}x = \cos 2x$
From this we get
$2({\sin ^2}x - {\cos ^2}x)({\sin ^2}x + {\cos ^2}x) + 18({\cos ^2}x - {\sin ^2}x) = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
As we know ${\sin ^2}x + {\cos ^2}x = 1$
Now $ - 2\cos 2x + 18\cos 2x = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
From this we can write
$16\cos 2x = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
Now we use $2{\cos ^2}x = 1 + \cos 2x$ and $2{\sin ^2}x = 1 - \cos 2x$
$16\cos 2x = 1 \pm 2\sqrt {\dfrac{1}{2}{{(\cos 2x + 1)}^2} + 9(1 - \cos 2x)} $
Now again we do rearrangements of terms
$16\cos 2x - 1 = \pm 2\sqrt {\dfrac{1}{2}{{(\cos 2x + 1)}^2} + 9(1 - \cos 2x)} $
Now take square both side
${(16\cos 2x - 1)^2} = 4\{ \dfrac{1}{2}({\cos ^2}2x + 1 + 2\cos 2x) + 9 - 9\cos 2x\} $
Now open square and multiply 4 inside the curly braces
$256{\cos ^2}2x + 1 - 32\cos 2x = 2{\cos ^2}2x + 2 + 4\cos 2x + 36 - 36\cos 2x$
Now after rearranging we get
$254{\cos ^2}2x = 37$
We can write this as
$\cos 2x = \pm \sqrt {\dfrac{{37}}{{254}}} $
Now
$2x = {\cos ^{ - 1}}( \pm \sqrt {\dfrac{{37}}{{254}}} )$
$x = \dfrac{1}{2} \times {\cos ^{ - 1}}( \pm \sqrt {\dfrac{{37}}{{254}}} )$ And
Now as question said $x \in [0,2\pi ]$
In this interval $\cos x$ take two time negative value and two time positive value
When $x \in \left[ {0,\dfrac{\pi }{2}} \right]$ , $\cos x$ take positive value so here $x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{37}}{{254}}} } \right)$
When $x \in \left[ {\dfrac{\pi }{2},\pi } \right]$, $\cos x$ take negative value so here $x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( { - \sqrt {\dfrac{{37}}{{254}}} } \right)$
And also when $x \in \left[ {\pi ,\dfrac{{2\pi }}{3}} \right]$, $\cos x$ take positive value so here $x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{37}}{{254}}} } \right)$
And also when $x \in \left[ {\dfrac{{2\pi }}{3},2\pi } \right]$, $\cos x$ take negative value so here $x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( { - \sqrt {\dfrac{{37}}{{254}}} } \right)$
From this we can say total 4 solution we have in $x \in \left[ {0,2\pi } \right]$
So our answer is 4.
Option A is the correct answer.
Note: We have to remember that $\cos \theta $ taking positive value in first and fourth coordinate and negative value in second and third coordinate.
First Quadrant- All are positive Second Quadrant- Sin and Cosec are positive Third Quadrant- Tan and Cot are positive Fourth Quadrant- Cos and Sec are positive.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE