Answer
Verified
441.3k+ views
Hint: Given an equation, we have to find the number of solutions of the equation. Which means that there are several solutions of the equation and hence we have to find the general solution of the equation. The formula used here is the trigonometric sum to product formula, which is given by:
$ \Rightarrow \sin C - \sin D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right)$
If $\sin x = 0$, then $x$ would be a multiple of $\pi $.
If $\cos x = 0$, then $x$ would be an odd multiple of $\dfrac{\pi }{2}$.
Complete step-by-step answer:
Given the equation $\sin 9\theta = \sin \theta $, we have to find the number of solutions of $\theta $.
Also given that the $\theta $ should be within the interval $\left[ {0,2\pi } \right]$.
So the solutions of $\theta $ from the equation $\sin 9\theta = \sin \theta $ should be in interval $\left[ {0,2\pi } \right]$.
Consider the equation $\sin 9\theta = \sin \theta $, as given below:
$ \Rightarrow \sin 9\theta = \sin \theta $
$ \Rightarrow \sin 9\theta - \sin \theta = 0$
Apply the trigonometric sum to product formula to the L.H.S of the above equation, as given below:
\[ \Rightarrow \sin 9\theta - \sin \theta = 2\cos \left( {\dfrac{{9\theta + \theta }}{2}} \right)\sin \left( {\dfrac{{9\theta - \theta }}{2}} \right)\]
\[ \Rightarrow \sin 9\theta - \sin \theta = 2\cos \left( {5\theta } \right)\sin \left( {4\theta } \right)\]
Now obtained the expression for the L.H.S of the equation as \[2\cos \left( {5\theta } \right)\sin \left( {4\theta } \right)\], which is equated to the R.H.S of the equation which is zero, as given below:
$ \Rightarrow 2\cos \left( {5\theta } \right)\sin \left( {4\theta } \right) = 0$
Here $\cos \left( {5\theta } \right) = 0$
And $\sin \left( {4\theta } \right) = 0$
Here considering $\cos \left( {5\theta } \right) = 0$, the general solutions of the equation are, as given below:
$ \Rightarrow \cos \left( {5\theta } \right) = 0$
$\therefore 5\theta = \left( {2n + 1} \right)\dfrac{\pi }{2}$
$ \Rightarrow \theta = \left( {2n + 1} \right)\dfrac{\pi }{{10}}$
Here n = 0,1,2,3…..
Here $\theta $ should be within the interval $\left[ {0,2\pi } \right]$, hence substituting the values of n till it does not cross the given interval.
The values of $\theta $ are :
$ \Rightarrow \dfrac{\pi }{{10}},\dfrac{{3\pi }}{{10}},\dfrac{{5\pi }}{{10}},\dfrac{{7\pi }}{{10}},\dfrac{{9\pi }}{{10}},\dfrac{{11\pi }}{{10}},\dfrac{{13\pi }}{{10}},\dfrac{{15\pi }}{{10}},\dfrac{{17\pi }}{{10}},\dfrac{{19\pi }}{{10}}$.
Here there are 10 solutions of $\theta $.
Now consider $\sin \left( {4\theta } \right) = 0$, the general solutions of the equation are, as given below:
$ \Rightarrow \sin \left( {4\theta } \right) = 0$
$\therefore 4\theta = n\pi $
$ \Rightarrow \theta = \dfrac{{n\pi }}{4}$
Here n = 0,1,2,3…..
Here $\theta $ should be within the interval $\left[ {0,2\pi } \right]$, hence substituting the values of n till it does not cross the given interval.
The values of $\theta $ are :
$ \Rightarrow \dfrac{\pi }{4},\dfrac{{2\pi }}{4},\dfrac{{3\pi }}{4},\dfrac{{4\pi }}{4},\dfrac{{5\pi }}{4},\dfrac{{6\pi }}{4},\dfrac{{7\pi }}{4},\dfrac{{8\pi }}{4}$.
Here there are 8 solutions of $\theta $.
$\therefore $In total the solutions of $\theta $ are given by:
$ \Rightarrow 10 + 8 = 18$
Hence there are 18 solutions of $\theta $.
Number of solutions of the equation of $\sin 9\theta = \sin \theta $ are 18.
Note:
Here the most important and crucial step is that while substituting the values of n in the general solutions of $\theta$, we have substitute and check in such a way that finally the value of $\theta$ does not cross the interval , that is the value of $\theta $ does not cross $2\pi $. One more important thing is that the formula used here to solve the value of $\theta $ is the trigonometric sum to product formula which is very important.
$ \Rightarrow \sin C - \sin D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right)$
If $\sin x = 0$, then $x$ would be a multiple of $\pi $.
If $\cos x = 0$, then $x$ would be an odd multiple of $\dfrac{\pi }{2}$.
Complete step-by-step answer:
Given the equation $\sin 9\theta = \sin \theta $, we have to find the number of solutions of $\theta $.
Also given that the $\theta $ should be within the interval $\left[ {0,2\pi } \right]$.
So the solutions of $\theta $ from the equation $\sin 9\theta = \sin \theta $ should be in interval $\left[ {0,2\pi } \right]$.
Consider the equation $\sin 9\theta = \sin \theta $, as given below:
$ \Rightarrow \sin 9\theta = \sin \theta $
$ \Rightarrow \sin 9\theta - \sin \theta = 0$
Apply the trigonometric sum to product formula to the L.H.S of the above equation, as given below:
\[ \Rightarrow \sin 9\theta - \sin \theta = 2\cos \left( {\dfrac{{9\theta + \theta }}{2}} \right)\sin \left( {\dfrac{{9\theta - \theta }}{2}} \right)\]
\[ \Rightarrow \sin 9\theta - \sin \theta = 2\cos \left( {5\theta } \right)\sin \left( {4\theta } \right)\]
Now obtained the expression for the L.H.S of the equation as \[2\cos \left( {5\theta } \right)\sin \left( {4\theta } \right)\], which is equated to the R.H.S of the equation which is zero, as given below:
$ \Rightarrow 2\cos \left( {5\theta } \right)\sin \left( {4\theta } \right) = 0$
Here $\cos \left( {5\theta } \right) = 0$
And $\sin \left( {4\theta } \right) = 0$
Here considering $\cos \left( {5\theta } \right) = 0$, the general solutions of the equation are, as given below:
$ \Rightarrow \cos \left( {5\theta } \right) = 0$
$\therefore 5\theta = \left( {2n + 1} \right)\dfrac{\pi }{2}$
$ \Rightarrow \theta = \left( {2n + 1} \right)\dfrac{\pi }{{10}}$
Here n = 0,1,2,3…..
Here $\theta $ should be within the interval $\left[ {0,2\pi } \right]$, hence substituting the values of n till it does not cross the given interval.
The values of $\theta $ are :
$ \Rightarrow \dfrac{\pi }{{10}},\dfrac{{3\pi }}{{10}},\dfrac{{5\pi }}{{10}},\dfrac{{7\pi }}{{10}},\dfrac{{9\pi }}{{10}},\dfrac{{11\pi }}{{10}},\dfrac{{13\pi }}{{10}},\dfrac{{15\pi }}{{10}},\dfrac{{17\pi }}{{10}},\dfrac{{19\pi }}{{10}}$.
Here there are 10 solutions of $\theta $.
Now consider $\sin \left( {4\theta } \right) = 0$, the general solutions of the equation are, as given below:
$ \Rightarrow \sin \left( {4\theta } \right) = 0$
$\therefore 4\theta = n\pi $
$ \Rightarrow \theta = \dfrac{{n\pi }}{4}$
Here n = 0,1,2,3…..
Here $\theta $ should be within the interval $\left[ {0,2\pi } \right]$, hence substituting the values of n till it does not cross the given interval.
The values of $\theta $ are :
$ \Rightarrow \dfrac{\pi }{4},\dfrac{{2\pi }}{4},\dfrac{{3\pi }}{4},\dfrac{{4\pi }}{4},\dfrac{{5\pi }}{4},\dfrac{{6\pi }}{4},\dfrac{{7\pi }}{4},\dfrac{{8\pi }}{4}$.
Here there are 8 solutions of $\theta $.
$\therefore $In total the solutions of $\theta $ are given by:
$ \Rightarrow 10 + 8 = 18$
Hence there are 18 solutions of $\theta $.
Number of solutions of the equation of $\sin 9\theta = \sin \theta $ are 18.
Note:
Here the most important and crucial step is that while substituting the values of n in the general solutions of $\theta$, we have substitute and check in such a way that finally the value of $\theta$ does not cross the interval , that is the value of $\theta $ does not cross $2\pi $. One more important thing is that the formula used here to solve the value of $\theta $ is the trigonometric sum to product formula which is very important.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
The quadratic equation whose one root is 2sqrt3 will class 10 maths JEE_Main
If alpha and beta are the roots of the equation x2 class 10 maths JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE