Answer
Verified
459.3k+ views
Hint: In this question, we have to evaluate the integral in a specific range.
The box function, more commonly known as the greatest integer function, returns the integer just below the value entered, denoted by \[\left[ x \right]\].
If the number is an integer use that integer.
If the number is not an integer use the smaller integer.
Complete step-by-step answer:
It is given that, On the real line \[\mathbb{R}\], we define two functions f and g as follows :
\[f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
\[g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
Where \[\left[ x \right]\] denotes the largest integer not exceeding \[x\].
We need to find out the positive integer $n$ for which
\[ \Rightarrow \int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \].
Let us denote,
\[ \Rightarrow f\left( x \right) = x\& g\left( x \right) = g\].
Also, \[m\left( x \right)\]=fractional part of \[x\].
\[ \Rightarrow m\left( x \right) = x - \left[ x \right]\].
Let us consider the term,
\[ \Rightarrow f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow f\left( x \right) = \min \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Now for \[g\left( x \right)\],
\[ \Rightarrow g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\]
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow g\left( x \right) = \max \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Where \[m\left( x \right)\] is always \[0 \leqslant m\left( x \right) < 1\]
For, \[0 < m\left( x \right) < 0.5\]
\[ \Rightarrow f = m\left( x \right),{\text{ }}g = 1 - m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = 1 - m\left( x \right) - m\left( x \right) = 1 - 2m\left( x \right)\]
\[ \Rightarrow g - f = 1 - 2m\left( x \right)........(1)\]
Similarly for, \[0.5 < m\left( x \right) < 1\]
\[ \Rightarrow f = 1 - m\left( x \right),{\text{ }}g = m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = m\left( x \right) - \left\{ {1 - m\left( x \right)} \right\}\]
Simplifying we get,
\[ \Rightarrow m\left( x \right) - 1 + m\left( x \right) = 2m\left( x \right) - 1\]
\[ \Rightarrow g - f = 2m\left( x \right) - 1.........(2)\]
Given that, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Since the above function is periodic,
That is, \[P(k) = P(k + 1)\] where, \[P(k) = \int\limits_k^{k + 1} {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} \]
So we get,
\[ \Rightarrow \int\limits_0^1 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_1^2 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_2^3 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx = ... = \int\limits_{n - 1}^n {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} } \]
Therefore we get, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
\[ \Rightarrow n\int\limits_0^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Splitting the limit,
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {g\left( x \right) - f\left( x \right)} \right)dx + n\int\limits_{0.5}^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx} = 100} \]
By substituting the equations (1) and (2) we get,
\[ \Rightarrow n\int\limits_0^{0.5} {\left\{ {1 - 2m\left( x \right)} \right\}dx + n\int\limits_{0.5}^1 {\left\{ {2m\left( x \right) - 1} \right\}dx} = 100} \]
\[\left[ x \right]\]is the greatest integer function, returning the integer just below the value entered.
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {1 - 2x} \right)dx} + n\int\limits_{0.5}^1 {\left( {2x - 1} \right)dx} = 100\]
Integrating the terms we get,
\[ \Rightarrow n\left[ x \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} - 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} + 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} - n\left[ x \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} = 100\]
Applying the limit values we get,
\[ \Rightarrow n\left( {0.5 - 0} \right) - 0.25n + n\left( {1 - 0.25} \right) - n\left( {1 - 0.5} \right) = 100\]
Simplifying we get,
\[ \Rightarrow 0.5n - 0.25n + 0.75n - 0.5n = 100\]
Add and subtract the terms to simplify,
\[ \Rightarrow 0.5n = 100\]
Solve for \[n\] we get,
\[ \Rightarrow n = 200\]
Hence, \[n = 200\]
$\therefore $(C) is the correct option.
Note: A periodic function is a function that repeats its values at regular intervals, for example, the trigonometric functions, which repeat at intervals of 2π radians. Periodic functions are used throughout science to describe oscillations, waves, and other phenomena that exhibit periodicity. A function \[f\left( x \right)\] is said to be periodic with period p if \[f\left( x \right) = f\left( {x + np} \right)\], for \[n = 1,2,3,.....\]
The box function, more commonly known as the greatest integer function, returns the integer just below the value entered, denoted by \[\left[ x \right]\].
If the number is an integer use that integer.
If the number is not an integer use the smaller integer.
Complete step-by-step answer:
It is given that, On the real line \[\mathbb{R}\], we define two functions f and g as follows :
\[f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
\[g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
Where \[\left[ x \right]\] denotes the largest integer not exceeding \[x\].
We need to find out the positive integer $n$ for which
\[ \Rightarrow \int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \].
Let us denote,
\[ \Rightarrow f\left( x \right) = x\& g\left( x \right) = g\].
Also, \[m\left( x \right)\]=fractional part of \[x\].
\[ \Rightarrow m\left( x \right) = x - \left[ x \right]\].
Let us consider the term,
\[ \Rightarrow f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow f\left( x \right) = \min \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Now for \[g\left( x \right)\],
\[ \Rightarrow g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\]
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow g\left( x \right) = \max \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Where \[m\left( x \right)\] is always \[0 \leqslant m\left( x \right) < 1\]
For, \[0 < m\left( x \right) < 0.5\]
\[ \Rightarrow f = m\left( x \right),{\text{ }}g = 1 - m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = 1 - m\left( x \right) - m\left( x \right) = 1 - 2m\left( x \right)\]
\[ \Rightarrow g - f = 1 - 2m\left( x \right)........(1)\]
Similarly for, \[0.5 < m\left( x \right) < 1\]
\[ \Rightarrow f = 1 - m\left( x \right),{\text{ }}g = m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = m\left( x \right) - \left\{ {1 - m\left( x \right)} \right\}\]
Simplifying we get,
\[ \Rightarrow m\left( x \right) - 1 + m\left( x \right) = 2m\left( x \right) - 1\]
\[ \Rightarrow g - f = 2m\left( x \right) - 1.........(2)\]
Given that, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Since the above function is periodic,
That is, \[P(k) = P(k + 1)\] where, \[P(k) = \int\limits_k^{k + 1} {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} \]
So we get,
\[ \Rightarrow \int\limits_0^1 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_1^2 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_2^3 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx = ... = \int\limits_{n - 1}^n {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} } \]
Therefore we get, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
\[ \Rightarrow n\int\limits_0^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Splitting the limit,
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {g\left( x \right) - f\left( x \right)} \right)dx + n\int\limits_{0.5}^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx} = 100} \]
By substituting the equations (1) and (2) we get,
\[ \Rightarrow n\int\limits_0^{0.5} {\left\{ {1 - 2m\left( x \right)} \right\}dx + n\int\limits_{0.5}^1 {\left\{ {2m\left( x \right) - 1} \right\}dx} = 100} \]
\[\left[ x \right]\]is the greatest integer function, returning the integer just below the value entered.
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {1 - 2x} \right)dx} + n\int\limits_{0.5}^1 {\left( {2x - 1} \right)dx} = 100\]
Integrating the terms we get,
\[ \Rightarrow n\left[ x \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} - 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} + 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} - n\left[ x \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} = 100\]
Applying the limit values we get,
\[ \Rightarrow n\left( {0.5 - 0} \right) - 0.25n + n\left( {1 - 0.25} \right) - n\left( {1 - 0.5} \right) = 100\]
Simplifying we get,
\[ \Rightarrow 0.5n - 0.25n + 0.75n - 0.5n = 100\]
Add and subtract the terms to simplify,
\[ \Rightarrow 0.5n = 100\]
Solve for \[n\] we get,
\[ \Rightarrow n = 200\]
Hence, \[n = 200\]
$\therefore $(C) is the correct option.
Note: A periodic function is a function that repeats its values at regular intervals, for example, the trigonometric functions, which repeat at intervals of 2π radians. Periodic functions are used throughout science to describe oscillations, waves, and other phenomena that exhibit periodicity. A function \[f\left( x \right)\] is said to be periodic with period p if \[f\left( x \right) = f\left( {x + np} \right)\], for \[n = 1,2,3,.....\]
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers