
On the real line \[\mathbb{R}\], we define two functions f and g as follows :
\[f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
\[g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
Where \[\left[ x \right]\] denotes the largest integer not exceeding \[x\]. The positive integer n for which
\[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \] is
(A) \[100\]
(B) \[198\]
(C) \[200\]
(D) \[202\]
Answer
583.2k+ views
Hint: In this question, we have to evaluate the integral in a specific range.
The box function, more commonly known as the greatest integer function, returns the integer just below the value entered, denoted by \[\left[ x \right]\].
If the number is an integer use that integer.
If the number is not an integer use the smaller integer.
Complete step-by-step answer:
It is given that, On the real line \[\mathbb{R}\], we define two functions f and g as follows :
\[f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
\[g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
Where \[\left[ x \right]\] denotes the largest integer not exceeding \[x\].
We need to find out the positive integer $n$ for which
\[ \Rightarrow \int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \].
Let us denote,
\[ \Rightarrow f\left( x \right) = x\& g\left( x \right) = g\].
Also, \[m\left( x \right)\]=fractional part of \[x\].
\[ \Rightarrow m\left( x \right) = x - \left[ x \right]\].
Let us consider the term,
\[ \Rightarrow f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow f\left( x \right) = \min \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Now for \[g\left( x \right)\],
\[ \Rightarrow g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\]
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow g\left( x \right) = \max \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Where \[m\left( x \right)\] is always \[0 \leqslant m\left( x \right) < 1\]
For, \[0 < m\left( x \right) < 0.5\]
\[ \Rightarrow f = m\left( x \right),{\text{ }}g = 1 - m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = 1 - m\left( x \right) - m\left( x \right) = 1 - 2m\left( x \right)\]
\[ \Rightarrow g - f = 1 - 2m\left( x \right)........(1)\]
Similarly for, \[0.5 < m\left( x \right) < 1\]
\[ \Rightarrow f = 1 - m\left( x \right),{\text{ }}g = m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = m\left( x \right) - \left\{ {1 - m\left( x \right)} \right\}\]
Simplifying we get,
\[ \Rightarrow m\left( x \right) - 1 + m\left( x \right) = 2m\left( x \right) - 1\]
\[ \Rightarrow g - f = 2m\left( x \right) - 1.........(2)\]
Given that, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Since the above function is periodic,
That is, \[P(k) = P(k + 1)\] where, \[P(k) = \int\limits_k^{k + 1} {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} \]
So we get,
\[ \Rightarrow \int\limits_0^1 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_1^2 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_2^3 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx = ... = \int\limits_{n - 1}^n {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} } \]
Therefore we get, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
\[ \Rightarrow n\int\limits_0^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Splitting the limit,
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {g\left( x \right) - f\left( x \right)} \right)dx + n\int\limits_{0.5}^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx} = 100} \]
By substituting the equations (1) and (2) we get,
\[ \Rightarrow n\int\limits_0^{0.5} {\left\{ {1 - 2m\left( x \right)} \right\}dx + n\int\limits_{0.5}^1 {\left\{ {2m\left( x \right) - 1} \right\}dx} = 100} \]
\[\left[ x \right]\]is the greatest integer function, returning the integer just below the value entered.
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {1 - 2x} \right)dx} + n\int\limits_{0.5}^1 {\left( {2x - 1} \right)dx} = 100\]
Integrating the terms we get,
\[ \Rightarrow n\left[ x \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} - 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} + 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} - n\left[ x \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} = 100\]
Applying the limit values we get,
\[ \Rightarrow n\left( {0.5 - 0} \right) - 0.25n + n\left( {1 - 0.25} \right) - n\left( {1 - 0.5} \right) = 100\]
Simplifying we get,
\[ \Rightarrow 0.5n - 0.25n + 0.75n - 0.5n = 100\]
Add and subtract the terms to simplify,
\[ \Rightarrow 0.5n = 100\]
Solve for \[n\] we get,
\[ \Rightarrow n = 200\]
Hence, \[n = 200\]
$\therefore $(C) is the correct option.
Note: A periodic function is a function that repeats its values at regular intervals, for example, the trigonometric functions, which repeat at intervals of 2π radians. Periodic functions are used throughout science to describe oscillations, waves, and other phenomena that exhibit periodicity. A function \[f\left( x \right)\] is said to be periodic with period p if \[f\left( x \right) = f\left( {x + np} \right)\], for \[n = 1,2,3,.....\]
The box function, more commonly known as the greatest integer function, returns the integer just below the value entered, denoted by \[\left[ x \right]\].
If the number is an integer use that integer.
If the number is not an integer use the smaller integer.
Complete step-by-step answer:
It is given that, On the real line \[\mathbb{R}\], we define two functions f and g as follows :
\[f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
\[g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
Where \[\left[ x \right]\] denotes the largest integer not exceeding \[x\].
We need to find out the positive integer $n$ for which
\[ \Rightarrow \int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \].
Let us denote,
\[ \Rightarrow f\left( x \right) = x\& g\left( x \right) = g\].
Also, \[m\left( x \right)\]=fractional part of \[x\].
\[ \Rightarrow m\left( x \right) = x - \left[ x \right]\].
Let us consider the term,
\[ \Rightarrow f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow f\left( x \right) = \min \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Now for \[g\left( x \right)\],
\[ \Rightarrow g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\]
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow g\left( x \right) = \max \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Where \[m\left( x \right)\] is always \[0 \leqslant m\left( x \right) < 1\]
For, \[0 < m\left( x \right) < 0.5\]
\[ \Rightarrow f = m\left( x \right),{\text{ }}g = 1 - m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = 1 - m\left( x \right) - m\left( x \right) = 1 - 2m\left( x \right)\]
\[ \Rightarrow g - f = 1 - 2m\left( x \right)........(1)\]
Similarly for, \[0.5 < m\left( x \right) < 1\]
\[ \Rightarrow f = 1 - m\left( x \right),{\text{ }}g = m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = m\left( x \right) - \left\{ {1 - m\left( x \right)} \right\}\]
Simplifying we get,
\[ \Rightarrow m\left( x \right) - 1 + m\left( x \right) = 2m\left( x \right) - 1\]
\[ \Rightarrow g - f = 2m\left( x \right) - 1.........(2)\]
Given that, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Since the above function is periodic,
That is, \[P(k) = P(k + 1)\] where, \[P(k) = \int\limits_k^{k + 1} {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} \]
So we get,
\[ \Rightarrow \int\limits_0^1 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_1^2 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_2^3 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx = ... = \int\limits_{n - 1}^n {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} } \]
Therefore we get, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
\[ \Rightarrow n\int\limits_0^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Splitting the limit,
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {g\left( x \right) - f\left( x \right)} \right)dx + n\int\limits_{0.5}^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx} = 100} \]
By substituting the equations (1) and (2) we get,
\[ \Rightarrow n\int\limits_0^{0.5} {\left\{ {1 - 2m\left( x \right)} \right\}dx + n\int\limits_{0.5}^1 {\left\{ {2m\left( x \right) - 1} \right\}dx} = 100} \]
\[\left[ x \right]\]is the greatest integer function, returning the integer just below the value entered.
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {1 - 2x} \right)dx} + n\int\limits_{0.5}^1 {\left( {2x - 1} \right)dx} = 100\]
Integrating the terms we get,
\[ \Rightarrow n\left[ x \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} - 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} + 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} - n\left[ x \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} = 100\]
Applying the limit values we get,
\[ \Rightarrow n\left( {0.5 - 0} \right) - 0.25n + n\left( {1 - 0.25} \right) - n\left( {1 - 0.5} \right) = 100\]
Simplifying we get,
\[ \Rightarrow 0.5n - 0.25n + 0.75n - 0.5n = 100\]
Add and subtract the terms to simplify,
\[ \Rightarrow 0.5n = 100\]
Solve for \[n\] we get,
\[ \Rightarrow n = 200\]
Hence, \[n = 200\]
$\therefore $(C) is the correct option.
Note: A periodic function is a function that repeats its values at regular intervals, for example, the trigonometric functions, which repeat at intervals of 2π radians. Periodic functions are used throughout science to describe oscillations, waves, and other phenomena that exhibit periodicity. A function \[f\left( x \right)\] is said to be periodic with period p if \[f\left( x \right) = f\left( {x + np} \right)\], for \[n = 1,2,3,.....\]
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

