On the real line \[\mathbb{R}\], we define two functions f and g as follows :
\[f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
\[g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
Where \[\left[ x \right]\] denotes the largest integer not exceeding \[x\]. The positive integer n for which
\[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \] is
(A) \[100\]
(B) \[198\]
(C) \[200\]
(D) \[202\]
Answer
Verified
473.1k+ views
Hint: In this question, we have to evaluate the integral in a specific range.
The box function, more commonly known as the greatest integer function, returns the integer just below the value entered, denoted by \[\left[ x \right]\].
If the number is an integer use that integer.
If the number is not an integer use the smaller integer.
Complete step-by-step answer:
It is given that, On the real line \[\mathbb{R}\], we define two functions f and g as follows :
\[f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
\[g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
Where \[\left[ x \right]\] denotes the largest integer not exceeding \[x\].
We need to find out the positive integer $n$ for which
\[ \Rightarrow \int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \].
Let us denote,
\[ \Rightarrow f\left( x \right) = x\& g\left( x \right) = g\].
Also, \[m\left( x \right)\]=fractional part of \[x\].
\[ \Rightarrow m\left( x \right) = x - \left[ x \right]\].
Let us consider the term,
\[ \Rightarrow f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow f\left( x \right) = \min \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Now for \[g\left( x \right)\],
\[ \Rightarrow g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\]
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow g\left( x \right) = \max \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Where \[m\left( x \right)\] is always \[0 \leqslant m\left( x \right) < 1\]
For, \[0 < m\left( x \right) < 0.5\]
\[ \Rightarrow f = m\left( x \right),{\text{ }}g = 1 - m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = 1 - m\left( x \right) - m\left( x \right) = 1 - 2m\left( x \right)\]
\[ \Rightarrow g - f = 1 - 2m\left( x \right)........(1)\]
Similarly for, \[0.5 < m\left( x \right) < 1\]
\[ \Rightarrow f = 1 - m\left( x \right),{\text{ }}g = m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = m\left( x \right) - \left\{ {1 - m\left( x \right)} \right\}\]
Simplifying we get,
\[ \Rightarrow m\left( x \right) - 1 + m\left( x \right) = 2m\left( x \right) - 1\]
\[ \Rightarrow g - f = 2m\left( x \right) - 1.........(2)\]
Given that, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Since the above function is periodic,
That is, \[P(k) = P(k + 1)\] where, \[P(k) = \int\limits_k^{k + 1} {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} \]
So we get,
\[ \Rightarrow \int\limits_0^1 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_1^2 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_2^3 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx = ... = \int\limits_{n - 1}^n {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} } \]
Therefore we get, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
\[ \Rightarrow n\int\limits_0^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Splitting the limit,
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {g\left( x \right) - f\left( x \right)} \right)dx + n\int\limits_{0.5}^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx} = 100} \]
By substituting the equations (1) and (2) we get,
\[ \Rightarrow n\int\limits_0^{0.5} {\left\{ {1 - 2m\left( x \right)} \right\}dx + n\int\limits_{0.5}^1 {\left\{ {2m\left( x \right) - 1} \right\}dx} = 100} \]
\[\left[ x \right]\]is the greatest integer function, returning the integer just below the value entered.
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {1 - 2x} \right)dx} + n\int\limits_{0.5}^1 {\left( {2x - 1} \right)dx} = 100\]
Integrating the terms we get,
\[ \Rightarrow n\left[ x \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} - 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} + 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} - n\left[ x \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} = 100\]
Applying the limit values we get,
\[ \Rightarrow n\left( {0.5 - 0} \right) - 0.25n + n\left( {1 - 0.25} \right) - n\left( {1 - 0.5} \right) = 100\]
Simplifying we get,
\[ \Rightarrow 0.5n - 0.25n + 0.75n - 0.5n = 100\]
Add and subtract the terms to simplify,
\[ \Rightarrow 0.5n = 100\]
Solve for \[n\] we get,
\[ \Rightarrow n = 200\]
Hence, \[n = 200\]
$\therefore $(C) is the correct option.
Note: A periodic function is a function that repeats its values at regular intervals, for example, the trigonometric functions, which repeat at intervals of 2π radians. Periodic functions are used throughout science to describe oscillations, waves, and other phenomena that exhibit periodicity. A function \[f\left( x \right)\] is said to be periodic with period p if \[f\left( x \right) = f\left( {x + np} \right)\], for \[n = 1,2,3,.....\]
The box function, more commonly known as the greatest integer function, returns the integer just below the value entered, denoted by \[\left[ x \right]\].
If the number is an integer use that integer.
If the number is not an integer use the smaller integer.
Complete step-by-step answer:
It is given that, On the real line \[\mathbb{R}\], we define two functions f and g as follows :
\[f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
\[g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
Where \[\left[ x \right]\] denotes the largest integer not exceeding \[x\].
We need to find out the positive integer $n$ for which
\[ \Rightarrow \int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \].
Let us denote,
\[ \Rightarrow f\left( x \right) = x\& g\left( x \right) = g\].
Also, \[m\left( x \right)\]=fractional part of \[x\].
\[ \Rightarrow m\left( x \right) = x - \left[ x \right]\].
Let us consider the term,
\[ \Rightarrow f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow f\left( x \right) = \min \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Now for \[g\left( x \right)\],
\[ \Rightarrow g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\]
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow g\left( x \right) = \max \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Where \[m\left( x \right)\] is always \[0 \leqslant m\left( x \right) < 1\]
For, \[0 < m\left( x \right) < 0.5\]
\[ \Rightarrow f = m\left( x \right),{\text{ }}g = 1 - m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = 1 - m\left( x \right) - m\left( x \right) = 1 - 2m\left( x \right)\]
\[ \Rightarrow g - f = 1 - 2m\left( x \right)........(1)\]
Similarly for, \[0.5 < m\left( x \right) < 1\]
\[ \Rightarrow f = 1 - m\left( x \right),{\text{ }}g = m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = m\left( x \right) - \left\{ {1 - m\left( x \right)} \right\}\]
Simplifying we get,
\[ \Rightarrow m\left( x \right) - 1 + m\left( x \right) = 2m\left( x \right) - 1\]
\[ \Rightarrow g - f = 2m\left( x \right) - 1.........(2)\]
Given that, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Since the above function is periodic,
That is, \[P(k) = P(k + 1)\] where, \[P(k) = \int\limits_k^{k + 1} {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} \]
So we get,
\[ \Rightarrow \int\limits_0^1 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_1^2 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_2^3 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx = ... = \int\limits_{n - 1}^n {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} } \]
Therefore we get, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
\[ \Rightarrow n\int\limits_0^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Splitting the limit,
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {g\left( x \right) - f\left( x \right)} \right)dx + n\int\limits_{0.5}^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx} = 100} \]
By substituting the equations (1) and (2) we get,
\[ \Rightarrow n\int\limits_0^{0.5} {\left\{ {1 - 2m\left( x \right)} \right\}dx + n\int\limits_{0.5}^1 {\left\{ {2m\left( x \right) - 1} \right\}dx} = 100} \]
\[\left[ x \right]\]is the greatest integer function, returning the integer just below the value entered.
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {1 - 2x} \right)dx} + n\int\limits_{0.5}^1 {\left( {2x - 1} \right)dx} = 100\]
Integrating the terms we get,
\[ \Rightarrow n\left[ x \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} - 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} + 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} - n\left[ x \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} = 100\]
Applying the limit values we get,
\[ \Rightarrow n\left( {0.5 - 0} \right) - 0.25n + n\left( {1 - 0.25} \right) - n\left( {1 - 0.5} \right) = 100\]
Simplifying we get,
\[ \Rightarrow 0.5n - 0.25n + 0.75n - 0.5n = 100\]
Add and subtract the terms to simplify,
\[ \Rightarrow 0.5n = 100\]
Solve for \[n\] we get,
\[ \Rightarrow n = 200\]
Hence, \[n = 200\]
$\therefore $(C) is the correct option.
Note: A periodic function is a function that repeats its values at regular intervals, for example, the trigonometric functions, which repeat at intervals of 2π radians. Periodic functions are used throughout science to describe oscillations, waves, and other phenomena that exhibit periodicity. A function \[f\left( x \right)\] is said to be periodic with period p if \[f\left( x \right) = f\left( {x + np} \right)\], for \[n = 1,2,3,.....\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE