
What is the pH of a \[1.0 \times {10^{ - 2}}\] molar solution of HCN? (for HCN, ${K_a} = 4.0 \times {10^{ - 10}}$)
A.$10$
B.Between $7$ and $10$
C.$7$
D.Between $4$ and $7$
Answer
545.4k+ views
Hint:HCN is a weak acid. Hence it will not dissociate completely. In order to find pH we need to calculate ${H^ + }$ ion concentration. For that first we need to calculate the degree of dissociation of HCN.
Complete step by step answer:HCN dissociates as,
$HCN \rightleftharpoons {H^ + } + C{N^ - }$
Since HCN is a weak acid, it will not dissociate completely in equilibrium. A considerable amount of HCN , ${H^ + }$ and $C{N^ - }$ will be present in equilibrium. HCN is the un-dissociated form and ${H^ + }$ and $C{N^ - }$ are ionised forms. For a strong acid, the concentration of the un-dissociated acid will be negligible at equilibrium.
Let c be the initial concentration of HCN and $\alpha $ be the degree of dissociation of HCN. Then at equilibrium,
Concentration of ${H^ + }$, $[{H^ + }]$ = $c\alpha $
For a weak acid, the acidity constant, ${K_a} = c{\alpha ^2}$
${K_a}$ and $c$ are given in the question.
${K_a} = 4.0 \times {10^{ - 10}}$
$c = 1.0 \times {10^{ - 2}}M$
Now, we can find out the value of degree of dissociation, $\alpha $ using the equation,
$\alpha = \sqrt[{}]{{\dfrac{{{K_a}}}{c}}}$
Substituting the values,
$\alpha = \sqrt {\dfrac{{4.0 \times {{10}^{ - 10}}}}{{1.0 \times {{10}^{ - 2}}}}} = \sqrt {4 \times {{10}^{ - 8}}} = 2 \times {10^{ - 4}}$
Using this we can find out the concentration of ${H^ + }$ , $[{H^ + }]$.
$[{H^ + }]$ = $c\alpha $
Substituting the values,
$[{H^ + }] = 1.0 \times {10^{ - 2}} \times 2 \times {10^{ - 4}} = 2 \times {10^{ - 6}}M$
pH can be find out using the formula,
$pH = - \log [{H^ + }]$
Substituting the value of $[{H^ + }]$, we get,
$pH = - \log [2 \times {10^{ - 6}}] = 5.699$
i.e. pH of a \[1.0 \times {10^{ - 2}}\] molar solution of HCN is $5.699$ . This value is between $4$ and $7$.
Therefore, the correct option is D.
Note:
There is a simple way to solve this problem.
We have,
$[{H^ + }]$ = $c\alpha $ and ${K_a} = c{\alpha ^2}$.
Multiply the equation, ${K_a} = c{\alpha ^2}$ with c , we get,
${K_a}c = {c^2}{\alpha ^2}$
$c\alpha = \sqrt {{K_a}c} $
So we get,
$[{H^ + }] = \sqrt {{K_a}c} $
In this way, we can find out the concentration of ${H^ + }$ ion directly. Then there is no need to find the degree of dissociation $\alpha $. The difference between two methods is, if we know the concept we don’t need to remember the equations in the first method. In the second method, we need to remember the equations. Anyway, one can easily derive the second formula from the first method.
Complete step by step answer:HCN dissociates as,
$HCN \rightleftharpoons {H^ + } + C{N^ - }$
Since HCN is a weak acid, it will not dissociate completely in equilibrium. A considerable amount of HCN , ${H^ + }$ and $C{N^ - }$ will be present in equilibrium. HCN is the un-dissociated form and ${H^ + }$ and $C{N^ - }$ are ionised forms. For a strong acid, the concentration of the un-dissociated acid will be negligible at equilibrium.
Let c be the initial concentration of HCN and $\alpha $ be the degree of dissociation of HCN. Then at equilibrium,
Concentration of ${H^ + }$, $[{H^ + }]$ = $c\alpha $
For a weak acid, the acidity constant, ${K_a} = c{\alpha ^2}$
${K_a}$ and $c$ are given in the question.
${K_a} = 4.0 \times {10^{ - 10}}$
$c = 1.0 \times {10^{ - 2}}M$
Now, we can find out the value of degree of dissociation, $\alpha $ using the equation,
$\alpha = \sqrt[{}]{{\dfrac{{{K_a}}}{c}}}$
Substituting the values,
$\alpha = \sqrt {\dfrac{{4.0 \times {{10}^{ - 10}}}}{{1.0 \times {{10}^{ - 2}}}}} = \sqrt {4 \times {{10}^{ - 8}}} = 2 \times {10^{ - 4}}$
Using this we can find out the concentration of ${H^ + }$ , $[{H^ + }]$.
$[{H^ + }]$ = $c\alpha $
Substituting the values,
$[{H^ + }] = 1.0 \times {10^{ - 2}} \times 2 \times {10^{ - 4}} = 2 \times {10^{ - 6}}M$
pH can be find out using the formula,
$pH = - \log [{H^ + }]$
Substituting the value of $[{H^ + }]$, we get,
$pH = - \log [2 \times {10^{ - 6}}] = 5.699$
i.e. pH of a \[1.0 \times {10^{ - 2}}\] molar solution of HCN is $5.699$ . This value is between $4$ and $7$.
Therefore, the correct option is D.
Note:
There is a simple way to solve this problem.
We have,
$[{H^ + }]$ = $c\alpha $ and ${K_a} = c{\alpha ^2}$.
Multiply the equation, ${K_a} = c{\alpha ^2}$ with c , we get,
${K_a}c = {c^2}{\alpha ^2}$
$c\alpha = \sqrt {{K_a}c} $
So we get,
$[{H^ + }] = \sqrt {{K_a}c} $
In this way, we can find out the concentration of ${H^ + }$ ion directly. Then there is no need to find the degree of dissociation $\alpha $. The difference between two methods is, if we know the concept we don’t need to remember the equations in the first method. In the second method, we need to remember the equations. Anyway, one can easily derive the second formula from the first method.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

