Answer
Verified
429.9k+ views
Hint: First understand the meaning of the term ‘point of inflection’. Now, double differentiate the function \[f\left( x \right)\] to find the function \[f''\left( x \right)\]. Substitute \[f''\left( x \right)\] equal to 0 and find the values of x. These values of x obtained will be the points of inflection and our answer.
Complete step-by-step solution:
Here, we have been provided with the function \[f\left( x \right)={{x}^{7}}-{{x}^{2}}\] and we have been asked to determine the points of inflection for this function. But first we need to understand the meaning of the term ‘point of inflection’.
Now, in differential calculus, the point of inflection or inflection point is a point on a smooth curve at which the curvature sign changes. If we will consider the graph of a function then we can say that the point of inflection is a point where the function changes from being concave to convex or from being convex to concave. For a double differentiable function, to find the point of inflection we use the condition \[f''\left( x \right)=0\], where \[f\left( x \right)\] is the given function.
Let us come to the question. We have the function \[f\left( x \right)={{x}^{7}}-{{x}^{2}}\]. So, differentiating both the sides with respect to x, we get,
\[\Rightarrow f'\left( x \right)=7{{x}^{6}}-2x\]
Again, differentiating both the sides with respect to x, we get,
\[\Rightarrow f''\left( x \right)=42{{x}^{5}}-2\]
Substituting \[f''\left( x \right)=0\], we get,
\[\begin{align}
& \Rightarrow 42{{x}^{5}}-2=0 \\
& \Rightarrow 42{{x}^{5}}=2 \\
& \Rightarrow {{x}^{5}}=\dfrac{2}{42} \\
\end{align}\]
Cancelling the common factors, we get,
\[\Rightarrow {{x}^{5}}=\dfrac{1}{21}\]
Taking fifth root both the sides, we get,
\[\Rightarrow x={{\left( \dfrac{1}{21} \right)}^{\dfrac{1}{5}}}\]
Hence, \[x=\sqrt[5]{\dfrac{1}{21}}\] is the point of inflection, so there is only one point of inflection for the function \[f\left( x \right)\].
Note: One may note that \[f''\left( x \right)=0\] is not a sufficient condition for having a point of inflection. You must know about the points like: - stationary point, saddle point, critical point in differential calculus. There are many functions for which you will get \[f''\left( x \right)=0\] at point x = 0 but it will not be an inflection point. These things will be read in higher mathematics.
Complete step-by-step solution:
Here, we have been provided with the function \[f\left( x \right)={{x}^{7}}-{{x}^{2}}\] and we have been asked to determine the points of inflection for this function. But first we need to understand the meaning of the term ‘point of inflection’.
Now, in differential calculus, the point of inflection or inflection point is a point on a smooth curve at which the curvature sign changes. If we will consider the graph of a function then we can say that the point of inflection is a point where the function changes from being concave to convex or from being convex to concave. For a double differentiable function, to find the point of inflection we use the condition \[f''\left( x \right)=0\], where \[f\left( x \right)\] is the given function.
Let us come to the question. We have the function \[f\left( x \right)={{x}^{7}}-{{x}^{2}}\]. So, differentiating both the sides with respect to x, we get,
\[\Rightarrow f'\left( x \right)=7{{x}^{6}}-2x\]
Again, differentiating both the sides with respect to x, we get,
\[\Rightarrow f''\left( x \right)=42{{x}^{5}}-2\]
Substituting \[f''\left( x \right)=0\], we get,
\[\begin{align}
& \Rightarrow 42{{x}^{5}}-2=0 \\
& \Rightarrow 42{{x}^{5}}=2 \\
& \Rightarrow {{x}^{5}}=\dfrac{2}{42} \\
\end{align}\]
Cancelling the common factors, we get,
\[\Rightarrow {{x}^{5}}=\dfrac{1}{21}\]
Taking fifth root both the sides, we get,
\[\Rightarrow x={{\left( \dfrac{1}{21} \right)}^{\dfrac{1}{5}}}\]
Hence, \[x=\sqrt[5]{\dfrac{1}{21}}\] is the point of inflection, so there is only one point of inflection for the function \[f\left( x \right)\].
Note: One may note that \[f''\left( x \right)=0\] is not a sufficient condition for having a point of inflection. You must know about the points like: - stationary point, saddle point, critical point in differential calculus. There are many functions for which you will get \[f''\left( x \right)=0\] at point x = 0 but it will not be an inflection point. These things will be read in higher mathematics.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE