Answer
Verified
431.1k+ views
Hint: Brewster’s law states that when light from a medium enters a medium of another medium such that the refractive index one is different from another, it gets polarized. This results in production of two rays i.e. refracted ray and reflected ray which are perpendicular to each other. This occurs when angle of incidence has a certain value called the Brewster’s angle.
Complete step by step solution:
In this figure, it can be seen that an incident unpolarized ray of light breaks down into a refracted ray of light and a reflected ray of light.
Let the refractive index of medium 1 is ${n_1}$ and that of medium 2 is ${n_2}$ . Using Snell’s law,
${n_i}\sin {\theta _i} = {n_r}\sin {\theta _r}.........(1)$ where ${\theta _i}\& {\theta _r}$ are the angle of incidence and angle of refraction respectively.
Brewster’s angle is denoted by ${\theta _B}$ and angle of reflection by ${\theta _r}$ .
We know ${\theta _i} = {\theta _{refl}}$
$\therefore $ $(1)$ becomes ${n_1}\sin {\theta _B} = {n_2}\sin {\theta _r}$
$ \Rightarrow \sin {\theta _r} = \dfrac{{{n_1}}}{{{n_2}}}\sin {\theta _B}.............(2)$
Consider the figure,
$\Rightarrow{\theta _{ref}} + {90^0} + {\theta _r} = {180^o}$ (Angle of straight line)
$ \Rightarrow {\theta _r} = {90^0} - {\theta _{ref}}............(3)$
$(3)$ can be written as ${\theta _r} = {90^0} - {\theta _B}$............$(4)$
because ${\theta _i} = {\theta _{refl}}$
Using $(2)\& (4)$ ,
$\Rightarrow \sin ({90^0} - {\theta _B}) = \dfrac{{{n_1}}}{{{n_2}}}\sin {\theta _B}$
$\therefore \cos {\theta _B} = \dfrac{{{n_1}}}{{{n_2}}}\sin {\theta _B}$ as $\sin ({90^0} - \theta ) = \cos \theta $
$\therefore \dfrac{{{n_2}}}{{{n_1}}} = \dfrac{{\sin {\theta _B}}}{{\cos {\theta _B}}} = \tan {\theta _B}$ as $\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta $
$\therefore {n_{21}} = \tan {\theta _B}$ where ${{{n}}_{21}}$ is refractive index of medium $2$ with respect to medium $1$
Note: Refractive index of a medium with respect to another one depends on both the medium and hence when one medium is replaced by another, the Brewster’s angle also changes.
Using inverse trigonometry, we can directly evaluate the Brewster’s angle as
${\theta _B} = {\tan ^{ - 1}}({n_{21}})$
Complete step by step solution:
In this figure, it can be seen that an incident unpolarized ray of light breaks down into a refracted ray of light and a reflected ray of light.
Let the refractive index of medium 1 is ${n_1}$ and that of medium 2 is ${n_2}$ . Using Snell’s law,
${n_i}\sin {\theta _i} = {n_r}\sin {\theta _r}.........(1)$ where ${\theta _i}\& {\theta _r}$ are the angle of incidence and angle of refraction respectively.
Brewster’s angle is denoted by ${\theta _B}$ and angle of reflection by ${\theta _r}$ .
We know ${\theta _i} = {\theta _{refl}}$
$\therefore $ $(1)$ becomes ${n_1}\sin {\theta _B} = {n_2}\sin {\theta _r}$
$ \Rightarrow \sin {\theta _r} = \dfrac{{{n_1}}}{{{n_2}}}\sin {\theta _B}.............(2)$
Consider the figure,
$\Rightarrow{\theta _{ref}} + {90^0} + {\theta _r} = {180^o}$ (Angle of straight line)
$ \Rightarrow {\theta _r} = {90^0} - {\theta _{ref}}............(3)$
$(3)$ can be written as ${\theta _r} = {90^0} - {\theta _B}$............$(4)$
because ${\theta _i} = {\theta _{refl}}$
Using $(2)\& (4)$ ,
$\Rightarrow \sin ({90^0} - {\theta _B}) = \dfrac{{{n_1}}}{{{n_2}}}\sin {\theta _B}$
$\therefore \cos {\theta _B} = \dfrac{{{n_1}}}{{{n_2}}}\sin {\theta _B}$ as $\sin ({90^0} - \theta ) = \cos \theta $
$\therefore \dfrac{{{n_2}}}{{{n_1}}} = \dfrac{{\sin {\theta _B}}}{{\cos {\theta _B}}} = \tan {\theta _B}$ as $\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta $
$\therefore {n_{21}} = \tan {\theta _B}$ where ${{{n}}_{21}}$ is refractive index of medium $2$ with respect to medium $1$
Note: Refractive index of a medium with respect to another one depends on both the medium and hence when one medium is replaced by another, the Brewster’s angle also changes.
Using inverse trigonometry, we can directly evaluate the Brewster’s angle as
${\theta _B} = {\tan ^{ - 1}}({n_{21}})$
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE