![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
\[PQ\] is a double ordinate of hyperbola \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] such that \[OPQ\] is an equilateral triangle, \[O\] being the centre of hyperbola, where eccentricity of hyperbola \[e\] satisfy \[\sqrt 3 e > k\], then the value of \[k\] is
Answer
457.2k+ views
Hint: Here, we will draw a figure that will satisfy the given condition. Then, using the properties of double ordinate of hyperbola and an equilateral triangle, we will compare the two equations. Substituting the end product into the eccentricity of a hyperbola, we will get the required value of \[k\].
Complete step-by-step answer:
Let the coordinates of point \[P\] be \[\left( {h,k} \right)\].
We will draw a figure showing the given conditions such that \[OPQ\] is an equilateral triangle, \[O\] being the centre of hyperbola.
Since, \[PQ\] is a double ordinate of hyperbola, hence
\[l\left( {PQ} \right) = 2k\]
Also, \[l\left( {OP} \right) = \sqrt {{h^2} + {k^2}} \]
Now, according to the question, \[OPQ\] is an equilateral triangle. Hence,
\[2k = \sqrt {{h^2} + {k^2}} \]
Squaring both sides, we get
\[ \Rightarrow 4{k^2} = {h^2} + {k^2}\]
\[ \Rightarrow 3{k^2} = {h^2}\]…………………………….\[\left( 1 \right)\]
Now, point \[P\] lies on the hyperbola, so, it would satisfy \[\dfrac{{{h^2}}}{{{a^2}}} - \dfrac{{{k^2}}}{{{b^2}}} = 1\]………………….\[\left( 2 \right)\]
Substituting the value of equation \[\left( 1 \right)\] in equation \[\left( 2 \right)\], we get
\[\dfrac{{3{k^2}}}{{{a^2}}} - \dfrac{{{k^2}}}{{{b^2}}} = 1\]
\[ \Rightarrow {k^2}\left( {\dfrac{3}{{{a^2}}} - \dfrac{1}{{{b^2}}}} \right) = 1\]
Dividing both sides by \[{k^2}\], we get
\[ \Rightarrow \left( {\dfrac{3}{{{a^2}}} - \dfrac{1}{{{b^2}}}} \right) = \dfrac{1}{{{k^2}}} > 0\]
This is because \[{k^2}\] can neither be 1 nor be negative.
Hence, the above equation can be written as:
\[\dfrac{{{b^2}}}{{{a^2}}} > \dfrac{1}{3}\]
Now, we know that, \[{e^2} = 1 + \dfrac{{{b^2}}}{{{a^2}}} > 1 + \dfrac{1}{3} > \dfrac{4}{3}\], where \[e\] is the eccentricity.
Taking square root on both sides, we get
\[ \Rightarrow e > \dfrac{2}{{\sqrt 3 }}\]
Now, according to the question, the eccentricity of hyperbola \[e\] satisfies, \[\sqrt 3 e > k\]. So,
\[e > \dfrac{k}{{\sqrt 3 }}\]
Comparing \[e > \dfrac{k}{{\sqrt 3 }}\] and \[e > \dfrac{2}{{\sqrt 3 }}\], we can say that,
\[k = 2\]
Hence, this is the required answer.
Note: We can also solve this question using an alternate method:
Since, the points \[PQ\] lie on the hyperbola, so,
Coordinates of \[P = \left( {a\sec \theta ,b\tan \theta } \right)\]
Coordinates of \[Q = \left( {a\sec \theta , - b\tan \theta } \right)\]
Now, using distance formula, we get
\[PQ = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]
Substituting the values of coordinates, we get
\[ \Rightarrow PQ = \sqrt {{{\left( {a\sec \theta - a\sec \theta } \right)}^2} + {{\left( { - b\tan \theta - b\tan \theta } \right)}^2}} \]
Adding and subtracting the terms, we get
\[ \Rightarrow PQ = \sqrt {{{\left( { - 2b\tan \theta } \right)}^2}} = 2b\tan \theta \]
Similarly,
\[OQ = \sqrt {{{\left( {a\sec \theta - 0} \right)}^2} + {{\left( { - b\tan \theta - 0} \right)}^2}} \]
Adding the terms, we get
\[ \Rightarrow OQ = \sqrt {{a^2}{{\sec }^2}\theta + {b^2}{{\tan }^2}{\theta ^2}} \]
Since, \[OPQ\] is an equilateral triangle, hence,
\[PQ = OQ\]
\[ \Rightarrow 2b\tan \theta = \sqrt {{a^2}{{\sec }^2}\theta + {b^2}{{\tan }^2}{\theta ^2}} \]
Squaring both sides, we get
\[ \Rightarrow 4{b^2}{\tan ^2}\theta = {a^2}{\sec ^2}\theta + {b^2}{\tan ^2}{\theta ^2}\]
\[ \Rightarrow 3{b^2}{\tan ^2}\theta = {a^2}{\sec ^2}\theta \]……………………….\[\left( 3 \right)\]
Now, we know that in a hyperbola, \[{b^2} = {a^2}\left( {{e^2} - 1} \right)\].
Substituting \[{b^2} = {a^2}\left( {{e^2} - 1} \right)\] in equation \[\left( 3 \right)\], we get
\[ \Rightarrow 3{a^2}\left( {{e^2} - 1} \right){\tan ^2}\theta = {a^2}{\sec ^2}\theta \]
Substituting \[{\tan ^2}\theta = \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}\] and \[{\sec ^2}\theta = \dfrac{1}{{{{\cos }^2}\theta }}\], we get
\[ \Rightarrow 3\left( {{e^2} - 1} \right)\dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} = \dfrac{1}{{{{\cos }^2}\theta }}\]
\[ \Rightarrow 3\left( {{e^2} - 1} \right){\sin ^2}\theta = 1\]
On cross multiplication, we get
\[ \Rightarrow {\sin ^2}\theta = \dfrac{1}{{3\left( {{e^2} - 1} \right)}}\]
The value of \[{\sin ^2}\theta \] is always less than 1, so
\[ \Rightarrow \dfrac{1}{{3\left( {{e^2} - 1} \right)}} < 1\]
Again on cross multiplication, we get
\[ \Rightarrow \dfrac{1}{{\left( {{e^2} - 1} \right)}} < 3\]
Taking reciprocal on both sides, and changing the inequality, we get
\[ \Rightarrow \left( {{e^2} - 1} \right) > \dfrac{1}{3}\]
Adding 1 on both sides, we get
\[ \Rightarrow {e^2} > \dfrac{1}{3} + 1 > \dfrac{4}{3}\]
Taking square root on both sides, we get
\[ \Rightarrow e > \dfrac{2}{{\sqrt 3 }}\]
Now, according to the question, the eccentricity of hyperbola \[e\] satisfies \[\sqrt 3 e > k\] or \[e > \dfrac{k}{{\sqrt 3 }}\].
Comparing \[e > \dfrac{k}{{\sqrt 3 }}\] and \[e > \dfrac{2}{{\sqrt 3 }}\], we can say that,
\[k = 2\]
Hence, this is the required answer.
Complete step-by-step answer:
Let the coordinates of point \[P\] be \[\left( {h,k} \right)\].
We will draw a figure showing the given conditions such that \[OPQ\] is an equilateral triangle, \[O\] being the centre of hyperbola.
![seo images](https://www.vedantu.com/question-sets/c459fe82-6473-4e25-8d58-f5dfd0f1fc9a6474798548545737787.png)
Since, \[PQ\] is a double ordinate of hyperbola, hence
\[l\left( {PQ} \right) = 2k\]
Also, \[l\left( {OP} \right) = \sqrt {{h^2} + {k^2}} \]
Now, according to the question, \[OPQ\] is an equilateral triangle. Hence,
\[2k = \sqrt {{h^2} + {k^2}} \]
Squaring both sides, we get
\[ \Rightarrow 4{k^2} = {h^2} + {k^2}\]
\[ \Rightarrow 3{k^2} = {h^2}\]…………………………….\[\left( 1 \right)\]
Now, point \[P\] lies on the hyperbola, so, it would satisfy \[\dfrac{{{h^2}}}{{{a^2}}} - \dfrac{{{k^2}}}{{{b^2}}} = 1\]………………….\[\left( 2 \right)\]
Substituting the value of equation \[\left( 1 \right)\] in equation \[\left( 2 \right)\], we get
\[\dfrac{{3{k^2}}}{{{a^2}}} - \dfrac{{{k^2}}}{{{b^2}}} = 1\]
\[ \Rightarrow {k^2}\left( {\dfrac{3}{{{a^2}}} - \dfrac{1}{{{b^2}}}} \right) = 1\]
Dividing both sides by \[{k^2}\], we get
\[ \Rightarrow \left( {\dfrac{3}{{{a^2}}} - \dfrac{1}{{{b^2}}}} \right) = \dfrac{1}{{{k^2}}} > 0\]
This is because \[{k^2}\] can neither be 1 nor be negative.
Hence, the above equation can be written as:
\[\dfrac{{{b^2}}}{{{a^2}}} > \dfrac{1}{3}\]
Now, we know that, \[{e^2} = 1 + \dfrac{{{b^2}}}{{{a^2}}} > 1 + \dfrac{1}{3} > \dfrac{4}{3}\], where \[e\] is the eccentricity.
Taking square root on both sides, we get
\[ \Rightarrow e > \dfrac{2}{{\sqrt 3 }}\]
Now, according to the question, the eccentricity of hyperbola \[e\] satisfies, \[\sqrt 3 e > k\]. So,
\[e > \dfrac{k}{{\sqrt 3 }}\]
Comparing \[e > \dfrac{k}{{\sqrt 3 }}\] and \[e > \dfrac{2}{{\sqrt 3 }}\], we can say that,
\[k = 2\]
Hence, this is the required answer.
Note: We can also solve this question using an alternate method:
Since, the points \[PQ\] lie on the hyperbola, so,
Coordinates of \[P = \left( {a\sec \theta ,b\tan \theta } \right)\]
Coordinates of \[Q = \left( {a\sec \theta , - b\tan \theta } \right)\]
Now, using distance formula, we get
\[PQ = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]
Substituting the values of coordinates, we get
\[ \Rightarrow PQ = \sqrt {{{\left( {a\sec \theta - a\sec \theta } \right)}^2} + {{\left( { - b\tan \theta - b\tan \theta } \right)}^2}} \]
Adding and subtracting the terms, we get
\[ \Rightarrow PQ = \sqrt {{{\left( { - 2b\tan \theta } \right)}^2}} = 2b\tan \theta \]
Similarly,
\[OQ = \sqrt {{{\left( {a\sec \theta - 0} \right)}^2} + {{\left( { - b\tan \theta - 0} \right)}^2}} \]
Adding the terms, we get
\[ \Rightarrow OQ = \sqrt {{a^2}{{\sec }^2}\theta + {b^2}{{\tan }^2}{\theta ^2}} \]
Since, \[OPQ\] is an equilateral triangle, hence,
\[PQ = OQ\]
\[ \Rightarrow 2b\tan \theta = \sqrt {{a^2}{{\sec }^2}\theta + {b^2}{{\tan }^2}{\theta ^2}} \]
Squaring both sides, we get
\[ \Rightarrow 4{b^2}{\tan ^2}\theta = {a^2}{\sec ^2}\theta + {b^2}{\tan ^2}{\theta ^2}\]
\[ \Rightarrow 3{b^2}{\tan ^2}\theta = {a^2}{\sec ^2}\theta \]……………………….\[\left( 3 \right)\]
Now, we know that in a hyperbola, \[{b^2} = {a^2}\left( {{e^2} - 1} \right)\].
Substituting \[{b^2} = {a^2}\left( {{e^2} - 1} \right)\] in equation \[\left( 3 \right)\], we get
\[ \Rightarrow 3{a^2}\left( {{e^2} - 1} \right){\tan ^2}\theta = {a^2}{\sec ^2}\theta \]
Substituting \[{\tan ^2}\theta = \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}\] and \[{\sec ^2}\theta = \dfrac{1}{{{{\cos }^2}\theta }}\], we get
\[ \Rightarrow 3\left( {{e^2} - 1} \right)\dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} = \dfrac{1}{{{{\cos }^2}\theta }}\]
\[ \Rightarrow 3\left( {{e^2} - 1} \right){\sin ^2}\theta = 1\]
On cross multiplication, we get
\[ \Rightarrow {\sin ^2}\theta = \dfrac{1}{{3\left( {{e^2} - 1} \right)}}\]
The value of \[{\sin ^2}\theta \] is always less than 1, so
\[ \Rightarrow \dfrac{1}{{3\left( {{e^2} - 1} \right)}} < 1\]
Again on cross multiplication, we get
\[ \Rightarrow \dfrac{1}{{\left( {{e^2} - 1} \right)}} < 3\]
Taking reciprocal on both sides, and changing the inequality, we get
\[ \Rightarrow \left( {{e^2} - 1} \right) > \dfrac{1}{3}\]
Adding 1 on both sides, we get
\[ \Rightarrow {e^2} > \dfrac{1}{3} + 1 > \dfrac{4}{3}\]
Taking square root on both sides, we get
\[ \Rightarrow e > \dfrac{2}{{\sqrt 3 }}\]
Now, according to the question, the eccentricity of hyperbola \[e\] satisfies \[\sqrt 3 e > k\] or \[e > \dfrac{k}{{\sqrt 3 }}\].
Comparing \[e > \dfrac{k}{{\sqrt 3 }}\] and \[e > \dfrac{2}{{\sqrt 3 }}\], we can say that,
\[k = 2\]
Hence, this is the required answer.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
The correct order of melting point of 14th group elements class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Define least count of vernier callipers How do you class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The combining capacity of an element is known as i class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the image of the point 38 about the line x+3y class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)