Prove that \[{{\left[ \dfrac{{{x}^{{{a}^{2}}}}}{{{x}^{{{b}^{2}}}}} \right]}^{\dfrac{1}{a+b}}}\times {{\left[ \dfrac{{{x}^{{{b}^{2}}}}}{{{x}^{{{c}^{2}}}}} \right]}^{\dfrac{1}{b+c}}}\times {{\left[ \dfrac{{{x}^{{{c}^{2}}}}}{{{x}^{{{a}^{2}}}}} \right]}^{\dfrac{1}{c+a}}}=1\] .
Answer
Verified
462.6k+ views
Hint: To prove that that \[{{\left[ \dfrac{{{x}^{{{a}^{2}}}}}{{{x}^{{{b}^{2}}}}} \right]}^{\dfrac{1}{a+b}}}\times {{\left[ \dfrac{{{x}^{{{b}^{2}}}}}{{{x}^{{{c}^{2}}}}} \right]}^{\dfrac{1}{b+c}}}\times {{\left[ \dfrac{{{x}^{{{c}^{2}}}}}{{{x}^{{{a}^{2}}}}} \right]}^{\dfrac{1}{c+a}}}=1\], we will consider the LHS. Using the formula $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$ , we can write the LHS as \[{{\left( {{x}^{{{a}^{2}}-{{b}^{2}}}} \right)}^{\dfrac{1}{a+b}}}\times {{\left( {{x}^{{{b}^{2}}-{{c}^{2}}}} \right)}^{\dfrac{1}{b+c}}}\times {{\left( {{x}^{{{c}^{2}}-{{a}^{2}}}} \right)}^{\dfrac{1}{c+a}}}\]. Using the formula ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$, we can further simplify the previous equation to get \[\left( {{x}^{{{\dfrac{{{a}^{2}}-b}{a+b}}^{2}}}} \right)\times \left( {{x}^{\dfrac{{{b}^{2}}-{{c}^{2}}}{b+c}}} \right)\times \left( {{x}^{\dfrac{{{c}^{2}}-{{a}^{2}}}{c+a}}} \right)\] . Let us apply the identity ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ on the powers and simplify to get \[{{x}^{\left( a-b \right)}}\times {{x}^{\left( b-c \right)}}\times {{x}^{\left( c-a \right)}}\] . Using the exponent rule ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ , we will get \[{{x}^{a-b+b-c+c-a}}\] . On solving this and using ${{a}^{0}}=1$ , the LHS will be equal to RHS.
Complete step by step answer:
We have to prove that that \[{{\left[ \dfrac{{{x}^{{{a}^{2}}}}}{{{x}^{{{b}^{2}}}}} \right]}^{\dfrac{1}{a+b}}}\times {{\left[ \dfrac{{{x}^{{{b}^{2}}}}}{{{x}^{{{c}^{2}}}}} \right]}^{\dfrac{1}{b+c}}}\times {{\left[ \dfrac{{{x}^{{{c}^{2}}}}}{{{x}^{{{a}^{2}}}}} \right]}^{\dfrac{1}{c+a}}}=1\] .
Let us consider the RHS.
We have \[{{\left[ \dfrac{{{x}^{{{a}^{2}}}}}{{{x}^{{{b}^{2}}}}} \right]}^{\dfrac{1}{a+b}}}\times {{\left[ \dfrac{{{x}^{{{b}^{2}}}}}{{{x}^{{{c}^{2}}}}} \right]}^{\dfrac{1}{b+c}}}\times {{\left[ \dfrac{{{x}^{{{c}^{2}}}}}{{{x}^{{{a}^{2}}}}} \right]}^{\dfrac{1}{c+a}}}\]
We know that $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$ . Hence, we can write the above equation as
\[{{\left( {{x}^{{{a}^{2}}-{{b}^{2}}}} \right)}^{\dfrac{1}{a+b}}}\times {{\left( {{x}^{{{b}^{2}}-{{c}^{2}}}} \right)}^{\dfrac{1}{b+c}}}\times {{\left( {{x}^{{{c}^{2}}-{{a}^{2}}}} \right)}^{\dfrac{1}{c+a}}}\]
We know that ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ . Thus, the above equation can be written as
\[\left( {{x}^{{{\dfrac{{{a}^{2}}-b}{a+b}}^{2}}}} \right)\times \left( {{x}^{\dfrac{{{b}^{2}}-{{c}^{2}}}{b+c}}} \right)\times \left( {{x}^{\dfrac{{{c}^{2}}-{{a}^{2}}}{c+a}}} \right)\]
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ . We can express the powers in this form. We will get
\[\left( {{x}^{\dfrac{\left( a+b \right)\left( a-b \right)}{a+b}}} \right)\times \left( {{x}^{\dfrac{\left( b+c \right)\left( b-c \right)}{b+c}}} \right)\times \left( {{x}^{\dfrac{\left( c+a \right)\left( c-a \right)}{c+a}}} \right)\]
Let’s cancel the common terms from the numerator and denominator of the powers.
\[{{x}^{\left( a-b \right)}}\times {{x}^{\left( b-c \right)}}\times {{x}^{\left( c-a \right)}}\]
We know that ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ . Hence, the above equation becomes
\[{{x}^{a-b+b-c+c-a}}\]
When solving the powers, we will get
\[{{x}^{0}}\]
We know that ${{a}^{0}}=1$ . Thus,
\[{{x}^{0}}=1=RHS\]
Hence, $LHS=RHS$
That is, \[{{\left[ \dfrac{{{x}^{{{a}^{2}}}}}{{{x}^{{{b}^{2}}}}} \right]}^{\dfrac{1}{a+b}}}\times {{\left[ \dfrac{{{x}^{{{b}^{2}}}}}{{{x}^{{{c}^{2}}}}} \right]}^{\dfrac{1}{b+c}}}\times {{\left[ \dfrac{{{x}^{{{c}^{2}}}}}{{{x}^{{{a}^{2}}}}} \right]}^{\dfrac{1}{c+a}}}=1\]
Hence, proved.
Note: In these types of questions, we can see that the bases are the same. So we have to simplify the terms and exponents using the rules of exponents. Rules of exponents must be studied thoroughly to solve this question. You may make mistakes in the rule for ${{\left( {{a}^{m}} \right)}^{n}}$ by writing ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m+n}}$ . Also, mistakes may be committed by writing $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m+n}}$ and ${{a}^{m}}\times {{a}^{n}}={{a}^{m-n}}$ . You may also write the identity ${{a}^{2}}-{{b}^{2}}$ as $={{a}^{2}}-2ab+{{b}^{2}}$ which leads to improper results.
Complete step by step answer:
We have to prove that that \[{{\left[ \dfrac{{{x}^{{{a}^{2}}}}}{{{x}^{{{b}^{2}}}}} \right]}^{\dfrac{1}{a+b}}}\times {{\left[ \dfrac{{{x}^{{{b}^{2}}}}}{{{x}^{{{c}^{2}}}}} \right]}^{\dfrac{1}{b+c}}}\times {{\left[ \dfrac{{{x}^{{{c}^{2}}}}}{{{x}^{{{a}^{2}}}}} \right]}^{\dfrac{1}{c+a}}}=1\] .
Let us consider the RHS.
We have \[{{\left[ \dfrac{{{x}^{{{a}^{2}}}}}{{{x}^{{{b}^{2}}}}} \right]}^{\dfrac{1}{a+b}}}\times {{\left[ \dfrac{{{x}^{{{b}^{2}}}}}{{{x}^{{{c}^{2}}}}} \right]}^{\dfrac{1}{b+c}}}\times {{\left[ \dfrac{{{x}^{{{c}^{2}}}}}{{{x}^{{{a}^{2}}}}} \right]}^{\dfrac{1}{c+a}}}\]
We know that $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$ . Hence, we can write the above equation as
\[{{\left( {{x}^{{{a}^{2}}-{{b}^{2}}}} \right)}^{\dfrac{1}{a+b}}}\times {{\left( {{x}^{{{b}^{2}}-{{c}^{2}}}} \right)}^{\dfrac{1}{b+c}}}\times {{\left( {{x}^{{{c}^{2}}-{{a}^{2}}}} \right)}^{\dfrac{1}{c+a}}}\]
We know that ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ . Thus, the above equation can be written as
\[\left( {{x}^{{{\dfrac{{{a}^{2}}-b}{a+b}}^{2}}}} \right)\times \left( {{x}^{\dfrac{{{b}^{2}}-{{c}^{2}}}{b+c}}} \right)\times \left( {{x}^{\dfrac{{{c}^{2}}-{{a}^{2}}}{c+a}}} \right)\]
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ . We can express the powers in this form. We will get
\[\left( {{x}^{\dfrac{\left( a+b \right)\left( a-b \right)}{a+b}}} \right)\times \left( {{x}^{\dfrac{\left( b+c \right)\left( b-c \right)}{b+c}}} \right)\times \left( {{x}^{\dfrac{\left( c+a \right)\left( c-a \right)}{c+a}}} \right)\]
Let’s cancel the common terms from the numerator and denominator of the powers.
\[{{x}^{\left( a-b \right)}}\times {{x}^{\left( b-c \right)}}\times {{x}^{\left( c-a \right)}}\]
We know that ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ . Hence, the above equation becomes
\[{{x}^{a-b+b-c+c-a}}\]
When solving the powers, we will get
\[{{x}^{0}}\]
We know that ${{a}^{0}}=1$ . Thus,
\[{{x}^{0}}=1=RHS\]
Hence, $LHS=RHS$
That is, \[{{\left[ \dfrac{{{x}^{{{a}^{2}}}}}{{{x}^{{{b}^{2}}}}} \right]}^{\dfrac{1}{a+b}}}\times {{\left[ \dfrac{{{x}^{{{b}^{2}}}}}{{{x}^{{{c}^{2}}}}} \right]}^{\dfrac{1}{b+c}}}\times {{\left[ \dfrac{{{x}^{{{c}^{2}}}}}{{{x}^{{{a}^{2}}}}} \right]}^{\dfrac{1}{c+a}}}=1\]
Hence, proved.
Note: In these types of questions, we can see that the bases are the same. So we have to simplify the terms and exponents using the rules of exponents. Rules of exponents must be studied thoroughly to solve this question. You may make mistakes in the rule for ${{\left( {{a}^{m}} \right)}^{n}}$ by writing ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m+n}}$ . Also, mistakes may be committed by writing $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m+n}}$ and ${{a}^{m}}\times {{a}^{n}}={{a}^{m-n}}$ . You may also write the identity ${{a}^{2}}-{{b}^{2}}$ as $={{a}^{2}}-2ab+{{b}^{2}}$ which leads to improper results.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Trending doubts
Distinguish between Khadar and Bhangar class 9 social science CBSE
Give a brief account of the thorn forests and scru class 9 social science CBSE
On an outline map of India mark the Karakoram range class 9 social science CBSE
What is the importance of natural resources? Why is it necessary to conserve them?
The ice floats on water because A solid have lesser class 9 chemistry CBSE
Explain the importance of pH in everyday life class 9 chemistry CBSE