
Prove that the lines joining the middle points of opposite sides of a quadrilateral and the line joining the middle points of its diagonals meet in a point and bisect one another.
Answer
608.4k+ views
Hint: - Here, we made a quadrilateral whose one diagonal is x axis. And then suppose the coordinate of the corner of the quadrilateral with respect to x axis and y axis. And then go through the bisector formula of coordinates.
Let ABCD be the quadrilateral such that diagonal AC is along x axis suppose the coordinates A, B, C and D be \[(0,0),({x_2},{y_2})({x_1},0)\]and \[({x_3},{y_3})\] respectively.
E and F are the mid points of sides AD and BC respectively, G and H are the midpoint of diagonals AC and BD. And the point of intersection of EF and GH is I.
Coordinates of E are \[\left( {\dfrac{{0 + {x_3}}}{2},\dfrac{{0 + {y_3}}}{2}} \right) = \left( {\dfrac{{{x_3}}}{2},\dfrac{{{y_3}}}{2}} \right)\]
Coordinates of Fare\[\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{0 + {y_2}}}{2}} \right) = \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_2}}}{2}} \right)\]
Coordinates of midpoint of EF are \[\left( {\dfrac{{\dfrac{{{x_3}}}{2} + \dfrac{{{x_1} + {x_2}}}{2}}}{2},\dfrac{{\dfrac{{{y_3}}}{2} + \dfrac{{{y_2}}}{2}}}{2}} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{4},\dfrac{{{y_2} + {y_3}}}{4}} \right)\]
G and H are the mid points of diagonal AC and BD respectively then
Coordinates of G are\[\left( {\dfrac{{0 + {x_1}}}{2},\dfrac{{0 + 0}}{2}} \right) = \left( {\dfrac{{{x_1}}}{2},0} \right)\]
Coordinates of H are\[\left( {\dfrac{{{x_2} + {x_3}}}{2},\dfrac{{{y_2} + {y_3}}}{2}} \right)\]
Coordinates of midpoint of GH are \[\left( {\dfrac{{\dfrac{{{x_1}}}{2} + \dfrac{{{x_2} + {x_3}}}{2}}}{2},\dfrac{{\dfrac{{{y_2}}}{2} + \dfrac{{{y_2} + {y_3}}}{2}}}{2}} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{4},\dfrac{{{y_2} + {y_3}}}{4}} \right)\]
As you can see, midpoints of both EF and GH are the same. So, EF and GH meet and bisect each other.
Hence, proved.
Note:-Whenever we face such types of questions first of all make the diagram by the statement given by the question, then use the section formula to find the midpoint of a line. If the two points have the same value then it must coincide.
Let ABCD be the quadrilateral such that diagonal AC is along x axis suppose the coordinates A, B, C and D be \[(0,0),({x_2},{y_2})({x_1},0)\]and \[({x_3},{y_3})\] respectively.
E and F are the mid points of sides AD and BC respectively, G and H are the midpoint of diagonals AC and BD. And the point of intersection of EF and GH is I.
Coordinates of E are \[\left( {\dfrac{{0 + {x_3}}}{2},\dfrac{{0 + {y_3}}}{2}} \right) = \left( {\dfrac{{{x_3}}}{2},\dfrac{{{y_3}}}{2}} \right)\]
Coordinates of Fare\[\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{0 + {y_2}}}{2}} \right) = \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_2}}}{2}} \right)\]
Coordinates of midpoint of EF are \[\left( {\dfrac{{\dfrac{{{x_3}}}{2} + \dfrac{{{x_1} + {x_2}}}{2}}}{2},\dfrac{{\dfrac{{{y_3}}}{2} + \dfrac{{{y_2}}}{2}}}{2}} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{4},\dfrac{{{y_2} + {y_3}}}{4}} \right)\]
G and H are the mid points of diagonal AC and BD respectively then
Coordinates of G are\[\left( {\dfrac{{0 + {x_1}}}{2},\dfrac{{0 + 0}}{2}} \right) = \left( {\dfrac{{{x_1}}}{2},0} \right)\]
Coordinates of H are\[\left( {\dfrac{{{x_2} + {x_3}}}{2},\dfrac{{{y_2} + {y_3}}}{2}} \right)\]
Coordinates of midpoint of GH are \[\left( {\dfrac{{\dfrac{{{x_1}}}{2} + \dfrac{{{x_2} + {x_3}}}{2}}}{2},\dfrac{{\dfrac{{{y_2}}}{2} + \dfrac{{{y_2} + {y_3}}}{2}}}{2}} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{4},\dfrac{{{y_2} + {y_3}}}{4}} \right)\]
As you can see, midpoints of both EF and GH are the same. So, EF and GH meet and bisect each other.
Hence, proved.
Note:-Whenever we face such types of questions first of all make the diagram by the statement given by the question, then use the section formula to find the midpoint of a line. If the two points have the same value then it must coincide.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

