
Prove that the lines joining the middle points of opposite sides of a quadrilateral and the line joining the middle points of its diagonals meet in a point and bisect one another.
Answer
529.5k+ views
Hint: - Here, we made a quadrilateral whose one diagonal is x axis. And then suppose the coordinate of the corner of the quadrilateral with respect to x axis and y axis. And then go through the bisector formula of coordinates.
Let ABCD be the quadrilateral such that diagonal AC is along x axis suppose the coordinates A, B, C and D be and respectively.
E and F are the mid points of sides AD and BC respectively, G and H are the midpoint of diagonals AC and BD. And the point of intersection of EF and GH is I.
Coordinates of E are
Coordinates of Fare
Coordinates of midpoint of EF are
G and H are the mid points of diagonal AC and BD respectively then
Coordinates of G are
Coordinates of H are
Coordinates of midpoint of GH are
As you can see, midpoints of both EF and GH are the same. So, EF and GH meet and bisect each other.
Hence, proved.
Note:-Whenever we face such types of questions first of all make the diagram by the statement given by the question, then use the section formula to find the midpoint of a line. If the two points have the same value then it must coincide.

Let ABCD be the quadrilateral such that diagonal AC is along x axis suppose the coordinates A, B, C and D be
E and F are the mid points of sides AD and BC respectively, G and H are the midpoint of diagonals AC and BD. And the point of intersection of EF and GH is I.
Coordinates of E are
Coordinates of Fare
Coordinates of midpoint of EF are
G and H are the mid points of diagonal AC and BD respectively then
Coordinates of G are
Coordinates of H are
Coordinates of midpoint of GH are
As you can see, midpoints of both EF and GH are the same. So, EF and GH meet and bisect each other.
Hence, proved.
Note:-Whenever we face such types of questions first of all make the diagram by the statement given by the question, then use the section formula to find the midpoint of a line. If the two points have the same value then it must coincide.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

What is the difference between Atleast and Atmost in class 9 maths CBSE

What was the capital of the king Kharavela of Kalinga class 9 social science CBSE
