Answer
Verified
482.1k+ views
Hint: Draw meridians AE , BD and CF and use their properties to find congruence in the triangles $\vartriangle AEC,\vartriangle ABD,\vartriangle AFC$ and use CPCT to prove the meridians of an equilateral triangle are equal.
Complete step-by-step answer:
Let ABC be the equilateral triangle.
Then we have,
Angle A= $60^\circ $
Angle B= $60^\circ $
Angle C= $60^\circ $and,
AB=BC=AC
Let AE, BD and CF be the medians.
A meridian divides a side into two equal parts.
$ \Rightarrow $AB=BC=AC
$ \Rightarrow $AF+BF=BE+CE=AD+CD
$ \Rightarrow $2AF=2BE=2AD ( since the parts are equal )
$ \Rightarrow $AF=BE=AD
Therefore ,
AF=BF=BE=CE=AD=CD (1)
In $\vartriangle AEC$and $\vartriangle ABD$ we have,
AC=AB ( from the property of equilateral triangle )
$\angle C = \angle A$
EC=AD ( from equation 1 )
By SAS congruence criterion we get,
$\vartriangle AEC \cong \vartriangle ABD$
By Corresponding Parts of Congruent Triangle rule we get,
AE=BD (2)
Similarly,
$\vartriangle ABD \cong \vartriangle AFC$ ( By SAS congruence criterion )
$ \Rightarrow \vartriangle ABD \cong \vartriangle AFC$ ( From above )
Then,
BD=CF (3)
By equating equation 2 and equation 3 we get,
AE=CF=BD
Hence, proved that medians of an equilateral triangle are equal .
Note:In such types of questions , the triangle congruence rules must be remembered and used to get to the required answer . Also the properties of meridian should be recalled . Remember while using SAS congruence rule , the Angle should include the included angle of both sides .
Complete step-by-step answer:
Let ABC be the equilateral triangle.
Then we have,
Angle A= $60^\circ $
Angle B= $60^\circ $
Angle C= $60^\circ $and,
AB=BC=AC
Let AE, BD and CF be the medians.
A meridian divides a side into two equal parts.
$ \Rightarrow $AB=BC=AC
$ \Rightarrow $AF+BF=BE+CE=AD+CD
$ \Rightarrow $2AF=2BE=2AD ( since the parts are equal )
$ \Rightarrow $AF=BE=AD
Therefore ,
AF=BF=BE=CE=AD=CD (1)
In $\vartriangle AEC$and $\vartriangle ABD$ we have,
AC=AB ( from the property of equilateral triangle )
$\angle C = \angle A$
EC=AD ( from equation 1 )
By SAS congruence criterion we get,
$\vartriangle AEC \cong \vartriangle ABD$
By Corresponding Parts of Congruent Triangle rule we get,
AE=BD (2)
Similarly,
$\vartriangle ABD \cong \vartriangle AFC$ ( By SAS congruence criterion )
$ \Rightarrow \vartriangle ABD \cong \vartriangle AFC$ ( From above )
Then,
BD=CF (3)
By equating equation 2 and equation 3 we get,
AE=CF=BD
Hence, proved that medians of an equilateral triangle are equal .
Note:In such types of questions , the triangle congruence rules must be remembered and used to get to the required answer . Also the properties of meridian should be recalled . Remember while using SAS congruence rule , the Angle should include the included angle of both sides .
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Trending doubts
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Discuss the main reasons for poverty in India