Answer
Verified
469.2k+ views
Hint: Here it is a trigonometric question. We will solve this by converting sec x into tan form or vice versa. And if we are given a function f(x) then the minimum value will be obtained by putting f’(x)=0 and for more than one value, f’’(x)>0 will give minimum and f’’(x)<0 will give maximum value.
Complete step-by-step answer:
Step-1
Let f(x) =$a\sec x - b\tan x$
Differentiating the above function we get,
$f'(x) = \dfrac{d}{{dx}}(a\sec x - b\tan x)$
Step-2
Solving this we get,
$f'(x) = \dfrac{d}{{dx}}a\sec x - \dfrac{d}{{dx}}b\tan x$
Or, $f'(x) = a\dfrac{d}{{dx}}\sec x - b\dfrac{d}{{dx}}\tan x$
Or, $f'(x) = a\sec x \cdot \tan x - b{\sec ^2}x$
Step-3
For the minimum value,
f’(x)=0
Step-4
Hence, $a\sec x \cdot \tan x - b{\sec ^2}x = 0$
$ \Rightarrow \sec x(a\tan x - b\sec x) = 0$
Step-6
sec x can never be equal to 0
Then, a tan x – b sec x = 0
Step-7
Cancelling cos x on both the side we get
a sin x = b
Or, sin x =b/a
Step-8
We know that in a triangle, sin x = perpendicular/hypotenuse
Here p = b and h = a
Therefore, base $b = \sqrt {{h^2} - {p^2}} $
$ \Rightarrow b = \sqrt {{a^2} - {b^2}} $
$\therefore \sec x = \dfrac{a}{{\sqrt {{a^2} - {b^2}} }}and\tan x = \dfrac{b}{{\sqrt {{a^2} - {b^2}} }}$
Step-9
Putting these values in f(x) =$a\sec x - b\tan x$we get,
$ \Rightarrow f'(x) = \sqrt {{a^2} - {b^2}} $
$ \Rightarrow f'(x) = \dfrac{{{a^2} - {b^2}}}{{\sqrt {{a^2} - {b^2}} }}$
$ \Rightarrow f'(x) = \sqrt {{a^2} - {b^2}} $
Step-10
Hence it is proved that the minimum value of $a\sec x - b\tan x$is $\sqrt {{a^2} - {b^2}} $where a and b is positive and a>b.
Note: Sec value can never be zero.
To get the minimum value f’(x) must be equal to 0.
You can also solve the same problem by converting sec x into tan form and then by differentiating it with respect to x.
Complete step-by-step answer:
Step-1
Let f(x) =$a\sec x - b\tan x$
Differentiating the above function we get,
$f'(x) = \dfrac{d}{{dx}}(a\sec x - b\tan x)$
Step-2
Solving this we get,
$f'(x) = \dfrac{d}{{dx}}a\sec x - \dfrac{d}{{dx}}b\tan x$
Or, $f'(x) = a\dfrac{d}{{dx}}\sec x - b\dfrac{d}{{dx}}\tan x$
Or, $f'(x) = a\sec x \cdot \tan x - b{\sec ^2}x$
Step-3
For the minimum value,
f’(x)=0
Step-4
Hence, $a\sec x \cdot \tan x - b{\sec ^2}x = 0$
$ \Rightarrow \sec x(a\tan x - b\sec x) = 0$
Step-6
sec x can never be equal to 0
Then, a tan x – b sec x = 0
Step-7
Cancelling cos x on both the side we get
a sin x = b
Or, sin x =b/a
Step-8
We know that in a triangle, sin x = perpendicular/hypotenuse
Here p = b and h = a
Therefore, base $b = \sqrt {{h^2} - {p^2}} $
$ \Rightarrow b = \sqrt {{a^2} - {b^2}} $
$\therefore \sec x = \dfrac{a}{{\sqrt {{a^2} - {b^2}} }}and\tan x = \dfrac{b}{{\sqrt {{a^2} - {b^2}} }}$
Step-9
Putting these values in f(x) =$a\sec x - b\tan x$we get,
$ \Rightarrow f'(x) = \sqrt {{a^2} - {b^2}} $
$ \Rightarrow f'(x) = \dfrac{{{a^2} - {b^2}}}{{\sqrt {{a^2} - {b^2}} }}$
$ \Rightarrow f'(x) = \sqrt {{a^2} - {b^2}} $
Step-10
Hence it is proved that the minimum value of $a\sec x - b\tan x$is $\sqrt {{a^2} - {b^2}} $where a and b is positive and a>b.
Note: Sec value can never be zero.
To get the minimum value f’(x) must be equal to 0.
You can also solve the same problem by converting sec x into tan form and then by differentiating it with respect to x.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE