
Prove that trigonometric equation $\dfrac{\tan \theta }{\sec \theta +1}=\dfrac{\sec \theta -1}{\tan \theta }$.
Answer
619.8k+ views
Hint: The given question is related to trigonometric identities. Try to recall the formulae related to the relationship between sine, cosine, tangent, and secant of an angle.
Complete step-by-step answer:
Before proceeding with the problem, first, let’s see the formulae used to solve the given problem.
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
$\sec \theta =\dfrac{1}{\cos \theta }$
$1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $
We need to prove that $\dfrac{\tan \theta }{\sec \theta +1}=\dfrac{\sec \theta -1}{\tan \theta }$.
First, we will consider the left-hand side of the equation. The left-hand side of the equation is given as $\dfrac{\tan \theta }{\sec \theta +1}$ . We know $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ . So, the left-hand side of the equation becomes $\dfrac{\dfrac{\sin \theta }{\cos \theta }}{\dfrac{1}{\cos \theta }+1}$ .
$\Rightarrow LHS=\dfrac{\dfrac{\sin \theta }{\cos \theta }}{\dfrac{1+\cos \theta }{\cos \theta }}$
$\Rightarrow LHS=\dfrac{\sin \theta }{1+\cos \theta }$
Now, we know that the value of a fraction does not change on multiplying and dividing the fraction by the same number, except $0$ .
So, $LHS=\dfrac{\sin \theta }{1+\cos \theta }\times \dfrac{1-\cos \theta }{1-\cos \theta }$ .
$\Rightarrow LHS=\dfrac{\sin \theta \left( 1-\cos \theta \right)}{1-{{\cos }^{2}}\theta }$
Now, we know that the value of $1-{{\cos }^{2}}\theta $ is equal to ${{\sin }^{2}}\theta $. So, the value of the left-hand side of the equation becomes $\dfrac{\sin \theta \left( 1-\cos \theta \right)}{{{\sin }^{2}}\theta }$ .
$\Rightarrow LHS=\dfrac{1-\cos \theta }{\sin \theta }$
So, the value of the left-hand side of the equation is equal to $\dfrac{1-\cos \theta }{\sin \theta }$ .
Now, we will consider the right-hand side of the equation. The right-hand side of the equation is given as $\dfrac{\sec \theta -1}{\tan \theta }$ . We know $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ . So, the right-hand side of the equation becomes $\dfrac{\dfrac{1}{\cos \theta }-1}{\dfrac{\sin \theta }{\cos \theta }}$ .
\[\Rightarrow RHS=\dfrac{\dfrac{1-\cos \theta }{\cos \theta }}{\dfrac{\sin \theta }{\cos \theta }}\]
$\Rightarrow RHS=\dfrac{1-\cos \theta }{\sin \theta }$
So, the value of the right-hand side of the equation is equal to $\dfrac{1-\cos \theta }{\sin \theta }$ . Clearly, the values of the left-hand side of the equation and the right-hand side of the equation are the same, i.e. LHS=RHS. Hence, proved.
Note: Students generally get confused and write $1+{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ instead of $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ , which is wrong. These formulae should be properly remembered without any mistake as confusion in the formula can result in getting a wrong answer.
Complete step-by-step answer:
Before proceeding with the problem, first, let’s see the formulae used to solve the given problem.
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
$\sec \theta =\dfrac{1}{\cos \theta }$
$1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $
We need to prove that $\dfrac{\tan \theta }{\sec \theta +1}=\dfrac{\sec \theta -1}{\tan \theta }$.
First, we will consider the left-hand side of the equation. The left-hand side of the equation is given as $\dfrac{\tan \theta }{\sec \theta +1}$ . We know $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ . So, the left-hand side of the equation becomes $\dfrac{\dfrac{\sin \theta }{\cos \theta }}{\dfrac{1}{\cos \theta }+1}$ .
$\Rightarrow LHS=\dfrac{\dfrac{\sin \theta }{\cos \theta }}{\dfrac{1+\cos \theta }{\cos \theta }}$
$\Rightarrow LHS=\dfrac{\sin \theta }{1+\cos \theta }$
Now, we know that the value of a fraction does not change on multiplying and dividing the fraction by the same number, except $0$ .
So, $LHS=\dfrac{\sin \theta }{1+\cos \theta }\times \dfrac{1-\cos \theta }{1-\cos \theta }$ .
$\Rightarrow LHS=\dfrac{\sin \theta \left( 1-\cos \theta \right)}{1-{{\cos }^{2}}\theta }$
Now, we know that the value of $1-{{\cos }^{2}}\theta $ is equal to ${{\sin }^{2}}\theta $. So, the value of the left-hand side of the equation becomes $\dfrac{\sin \theta \left( 1-\cos \theta \right)}{{{\sin }^{2}}\theta }$ .
$\Rightarrow LHS=\dfrac{1-\cos \theta }{\sin \theta }$
So, the value of the left-hand side of the equation is equal to $\dfrac{1-\cos \theta }{\sin \theta }$ .
Now, we will consider the right-hand side of the equation. The right-hand side of the equation is given as $\dfrac{\sec \theta -1}{\tan \theta }$ . We know $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ . So, the right-hand side of the equation becomes $\dfrac{\dfrac{1}{\cos \theta }-1}{\dfrac{\sin \theta }{\cos \theta }}$ .
\[\Rightarrow RHS=\dfrac{\dfrac{1-\cos \theta }{\cos \theta }}{\dfrac{\sin \theta }{\cos \theta }}\]
$\Rightarrow RHS=\dfrac{1-\cos \theta }{\sin \theta }$
So, the value of the right-hand side of the equation is equal to $\dfrac{1-\cos \theta }{\sin \theta }$ . Clearly, the values of the left-hand side of the equation and the right-hand side of the equation are the same, i.e. LHS=RHS. Hence, proved.
Note: Students generally get confused and write $1+{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ instead of $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ , which is wrong. These formulae should be properly remembered without any mistake as confusion in the formula can result in getting a wrong answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

