Relation between torque and angular momentum is similar to the relation between
A. Energy and displacement
B. Acceleration and velocity
C. Mass and moment of inertia
D. Force and linear momentum
Answer
Verified
414.6k+ views
Hint: In these types of questions remember to formulate the relation of \[{\rm T} = \dfrac{{dl}}{{dt}}\] and $F = \dfrac{{dp}}{{dt}}$where P is the linear momentum and L is the angular momentum. Using these relations, find the direct relation between torque and angular momentum which will lead you to the answer.
Complete Step-by-Step solution:
Angular momentum is described as: L=$i\omega $
Here it is a moment of inertia and $\omega $ is omega.
On the other hand we can describe torque as a twisting force that causes rotation. Torque is a force multiplied by radius multiplied by the sine of angle ($\theta $) at which force is applied.
$T = 4\sin \theta $
So, torque is directly affecting the angular velocity of a spinning object. Since torque can change angular velocity, and the amount of angular momentum an object has depends on its angular velocity, it makes sense that torque can change angular momentum this is how the two are related.
The expression for angular momentum and torque is:$\dfrac{{dl}}{{dt}}$
Thus, the relation between angular momentum and torque is the same as between the linear momentum and force. There is an analogy between parameters of linear motion and rotational motion.
Note: You must have noticed that the faster you spin the longer it takes you to stop. This is due to the Angular Momentum. The more angular momentum the object has, the more it tends to keep rotating. Angular momentum can be defined as the moment of inertia time’s angular velocity.
Complete Step-by-Step solution:
Angular momentum is described as: L=$i\omega $
Here it is a moment of inertia and $\omega $ is omega.
On the other hand we can describe torque as a twisting force that causes rotation. Torque is a force multiplied by radius multiplied by the sine of angle ($\theta $) at which force is applied.
$T = 4\sin \theta $
So, torque is directly affecting the angular velocity of a spinning object. Since torque can change angular velocity, and the amount of angular momentum an object has depends on its angular velocity, it makes sense that torque can change angular momentum this is how the two are related.
The expression for angular momentum and torque is:$\dfrac{{dl}}{{dt}}$
Thus, the relation between angular momentum and torque is the same as between the linear momentum and force. There is an analogy between parameters of linear motion and rotational motion.
Note: You must have noticed that the faster you spin the longer it takes you to stop. This is due to the Angular Momentum. The more angular momentum the object has, the more it tends to keep rotating. Angular momentum can be defined as the moment of inertia time’s angular velocity.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE